Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 8 2018 lúc 6:27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2018 lúc 7:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 12:12

Bất phương trình m > f(x) - ln(-x) đúng với mọi  x ∈ - 1 ; - 1 e

Ta có 

Suy ra hàm số g(x) đồng biến trên 

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 9 2017 lúc 9:26

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2019 lúc 12:02

a) F(x) = 1 -  cos x 2 + π 4

d) K(x) = 2 1 - 1 1 + tan x 2

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 16:29

\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)

Hà Quang Minh
22 tháng 8 2023 lúc 16:34

\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)

Hà Quang Minh
22 tháng 9 2023 lúc 20:30

e,

\(y = \ln (x + 1) \Rightarrow y' = \frac{1}{{x + 1}} \Rightarrow y'' =  - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\)

f,

\(y = \ln ({e^x} + 1) \Rightarrow y' = \frac{{{e^x}}}{{{e^x} + 1}} \Rightarrow y'' =  - \frac{{{e^x}.{e^x}}}{{{{\left( {{e^x} + 1} \right)}^2}}} =  - \frac{{{e^{2x}}}}{{{{\left( {{e^x} + 1} \right)}^2}}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 17:34

Đáp án D

Phương pháp:

Cách 1: Sử dụng công thức tính nguyên hàm của 1 tổng.

Cách 2: Đạo hàm từng đáp án của đề bài, kết quả nào ra đúng f(x) thì đó là đáp án đúng

Cách giải:

⇒ 2 x 2 ln   x + x 2  là một nguyên hàm của hàm số  f x = 4 x 1 + ln   x

Họ nguyên hàm của hàm số  f x = 4 x 1 + ln   x là  2 x 2 ln   x + x 2 + C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 9 2017 lúc 6:55

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 10 2018 lúc 12:29

Chọn A

Đặt t = ln 2   x + 1 ⇒ t 2 = ln 2 x + 1 ⇒ t d t = ln x x d x

∫ ln 2 x + 1 . ln x x d x = ∫ t 2 d t   = t 3 3 + C = ln 2 x + 1 3 3 + C

Vì  F ( 1 ) = 1 3 nên  C = 0

Vậy  F 2 ( e ) = 8 9

...:v
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 23:47

Làm xuôi thì đơn giản, tính \(F'\left(x\right)\) là xong (chịu khó biến đổi)

Làm ngược thì nhìn biểu thức hơi thiếu thân thiện

\(\int\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}dx=\int\dfrac{2\sqrt{2}\left(x^2-1\right)}{\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)}dx\)

Phân tách hệ số bất định:

\(\dfrac{2\sqrt{2}\left(x^2-1\right)}{\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)}=\dfrac{a\left(2x-\sqrt{2}\right)}{x^2-x\sqrt{2}+1}+\dfrac{b\left(2x+\sqrt{2}\right)}{x^2+x\sqrt{2}+1}\)

Quan tâm tử số: \(a\left(2x-\sqrt{2}\right)\left(x^2+x\sqrt{2}+1\right)+b\left(2x+\sqrt{2}\right)\left(x^2-x\sqrt{2}+1\right)\)

\(=2\left(a+b\right)x^3+\sqrt{2}\left(a-b\right)x^2+\sqrt{2}\left(b-a\right)\)

Đồng nhất 2 tử số: \(\left\{{}\begin{matrix}a+b=0\\a-b=2\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Do đó:

\(\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}=\dfrac{2x-\sqrt{2}}{x^2-x\sqrt{2}+1}-\dfrac{2x+\sqrt{2}}{x^2+x\sqrt{2}+1}\)