Cho hình chóp S.ABC có SA ^ (ABC), AB = 1, AC = 2 và B A C ⏜ = 60 ° . Gọi M , N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của mặt cầu đi qua các điểm A, B, C, M, N
A. R = 2
B. R = 2 3 3
C. R = 4 3
D. R = 1
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , A B = 1 , A C = 2 , B A C ^ = 60 ° Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của mặt cầu đi qua các điểm A,B,C,M,N
Cho hình chóp S.ABC có SA \(\perp\)(ABC),AB=3, AC=2 và \(\widehat{BAC}=60^o\) . Gọi M,N lần lượt là hình chiếu của A trên SB,SC. TÍnh bán kính R của mặt cầu ngoại tiếp hình chóp A.BCMN.
Cho hình chóp S.ABCD có SA ^ (ABC), AB = 1, AC = 2 và B A C ^ = 60 ∘ .
Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của
mặt cầu đi qua các điểm A, B, C, M, N.
Cho hình chóp S.ABC có SA vuông góc với (ABC), AB=a, AC=a 2 , B A C ^ = 45 ° . Gọi B',C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Thể tích khối cầu ngoại tiếp hình chóp A.BCC'B'.
Cho hình chóp S.ABC có cạnh S A ⊥ A B C , tam giác ABC đều và A B = a ; góc giữa SB và mặt phẳng (ABC) bằng 60 o . Gọi M,N lần lượt là trung điểm của SA,SB. Tính thể tích khối chóp S . M N C :
A. a 3 16
B. a 3 4
C. a 3 3 12
D. a 3 8
Cho hình chóp S.ABC có S A ⊥ A B C , tam giác ABC đều AB = a; góc giữa SB và mặt phẳng (ABC) bằng 60 o . Gọi M,N lần lượt là trung điểm của SA,SB. Tính thể tích khối chóp S.MNC:
A. a 3 16
B. a 3 4
C. a 3 3 12
D. a 3 8
Cho hình chóp \(S.ABC\) có \(SA = a\), góc giữa \(SA\) và \(mp\left( {ABC} \right)\) là \({60^ \circ }\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SA\) và \(SB\). Chứng minh \(MN\parallel \left( {ABC} \right)\) và tính \(d\left( {MN,\left( {ABC} \right)} \right)\).
Kẻ \(SH\perp\left(ABC\right)\) \(\Rightarrow\widehat{SAH}=60^0\)
Áp dụng hệ thức lượng vào tam giác vuông có:
\(tan60^0=\dfrac{SH}{SA}\Leftrightarrow SH=\sqrt{3}a\)
Ta có M và N lần lượt là trung điểm của SA và SB
\(\Rightarrow\) MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//BC\)
mà \(BC\subset\left(ABC\right)\) , \(MN⊄(ABC) \)
\(\Rightarrow MN//\left(ABC\right)\)
\(d\left(MN,\left(ABC\right)\right)=d\left(M,\left(ABC\right)\right)=\dfrac{1}{2}d\left(S,\left(ABC\right)\right)=\dfrac{\sqrt{3}}{2}.a\)
Vậy \(d\left(MN,\left(ABC\right)\right)=\dfrac{\sqrt{3}}{2}a\)
Chứng minh \(d\left(M,\left(ABC\right)\right)=\dfrac{1}{2}d\left(S,\left(ABC\right)\right)\)
Kẻ \(MK\perp\left(ABC\right)\Rightarrow MK//SH\)
Áp dụng định lý thales: \(\dfrac{MK}{SH}=\dfrac{AM}{AS}=\dfrac{1}{2}\)
\(\Rightarrow MK=\dfrac{1}{2}SH\Rightarrow d\left(M,\left(ABC\right)\right)=\dfrac{1}{2}d\left(S,\left(ABC\right)\right)\) (đpcm)
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC = b, AB = c, . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân có AB = BC = a. Cạnh bên SA vuông góc với đáy, góc SBA = 60°. Gọi M là điểm nằm trên AC sao cho A C → = 2 C M → . Tính khoảng cách giữaSM và AB.
A. 6 a 7 7
B. a 7 7
C. a 7 21
D. 3 a 7 7