tính tổng S=1^3+2^3+3^3+...+2015^3
Tính tổng S= 2015 + 2015/1+2 + 2015/1+2+3 + ... + 2015/1+2+3+...+2016
viết lại đề cho rõ phân số đi bn
Tính tổng S=2015+2015/1+2+2015/1+2+3+..........+2015/1+2+3+........+2016
Tính tổng : S = (-3)^0 + (-3)^1 + (-3)^2 +.......+(-3)^2015
S = (-3)0 + (-3)1 + (-3)2 + ... + (-3)2015
=> 3S = (-3)1 + (-3)2 + (-3)3 + ... + (-3)2016
=> 3S + S = [(-3)1 + (-3)2 + ... + (-3)2016] + [(-3)0 + (-3)1 + ... + (-3)2015]
=> 4S = (-3)2016 + (-3)0
=> S = \(\frac{\left(-3\right)^{2016}+\left(-3\right)^0}{4}\)
Tính tổng S = \(2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+...+2016}\)
Ta có :
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)
\(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)
\(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)
\(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2015.2.\left(1-\frac{1}{2017}\right)\)
\(=2015.2.\frac{2016}{2017}\)
=\(\frac{2015.2.2016}{2017}\)
=\(\frac{8124480}{2017}\)
Vậy \(S=\frac{8124480}{2017}\)
Sai vì ngoài học tập ra còn cần phải siêng năng chăm chỉ trong các lĩnh vực khác nửa như giúp đỡ mọi người ,tham gia các hoạt động rèn luyện
Tính tổng S = \(2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+...+2016}\)
Tính tổng:
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+....+\frac{2015}{1+2+3+...+2016}\)
Tính tổng: S= (- 1) + (- 1) ^ 2 + (- 1) ^ 3 +...+(-1)^ 2014 +(-1)^ 2015
\(\cdot DuyNam\)
\(S=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2014}+\left(-1\right)^{2015}\)
\(S=\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\) (2015 thừa số)
`-> S= (-1)`
tính các tổng sau
a, S1=1+(-2)+3+(-4)+..........+(-2014)+2015
b,S2=(-2)+4+(-6)+8+...............+(-2014)+2016
c,S3=1+(-3)+5+(-7)+................+2013+(-2015)
d,S4=(-2015)+(-2014)+(-2013)+......+2015+2016
làm đầy đủ chắc chắn cho mk nhé !
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Cô ơi dấu hiệu chia hết cho 5 em mở không được