3x-9=11
3x-11/11 - x/3 = 3x-5/7 - 5x-3/9
6x-9x2-11
=-9x2+6x-11
=-(9x2+6x)-11
=-\([\)(9x2-2.x.3+9)-9\(]\)-11
=-\([\)(3x-9)2-9\(]\)-11
=-(3x-9)2+9-11
=-(3x-9)2-2
vậy ......
các bạn xem giúp với có đúng ko
\(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
tìm x biết |3x-2|+|3x-11|=9
Trường hợp 1: x<2/3
Pt sẽ là 2-3x+11-3x=9
=>-6x+13=9
=>-6x=-4
hay x=2/3(loại)
Trường hợp 2: 2/3<=x<11/3
Pt sẽ là 3x-2+11-3x=9
=>9=9(luôn đúng)
Trường hợp 3: x>=11/3
Pt sẽ là 3x-2+3x-11=9
=>6x-13=9
=>6x=22
hay x=11/3(nhận)
Giải các hệ phương trình sau: 3 x + y + 9 = 2 x - y 2 x + y = 3 x - y - 11
(3x+9)*(11-x)=-2
\(\text{(3x+9)*(11-x)=-2}\)
\(\text{(3x+9)*(11-x)=-2}.1=1.-2=-1.2=2.-1\)
TH1, \(\text{(3x+9)*(11-x)=-2}.1\)
\(\Rightarrow\orbr{\begin{cases}3x+9=-2\\11-x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-11}{3}\\x=10\end{cases}}}\)
Th2, \(\text{(3x+9)*(11-x)=1.-2}\)
\(\orbr{\begin{cases}3x+9=1\\11-x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-8}{3}\\x=13\end{cases}}}\)
Th3, \(\text{(3x+9)*(11-x)=-1.2}\)
\(\Rightarrow\orbr{\begin{cases}3x+9=-1\\11-x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-10}{3}\\x=9\end{cases}}}\)
TH4, \(\text{(3x+9)*(11-x)=2.-1}\)
\(\Rightarrow\orbr{\begin{cases}3x+9=2\\11-x=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-7}{3}\\x=12\end{cases}}}\)
Vậy x= .. thì y =...
x = .. thì y =...
x=... thì y=...
x=...thi y=...
chúc bạn học tốt
(2x-1)^9-(2x-1)^11=0
(2-3x)^13=(3x-2)^12
+) \(\left(2x-1\right)^9-\left(2x-1\right)^{11}=0\)
\(\Leftrightarrow\left(2x-1\right)^9=\left(2x-1\right)^{11}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x-1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
+) \(\left(2-3x\right)^{13}=\left(3x-2\right)^{12}\)
\(\Leftrightarrow\left(2-3x\right)^{13}=\left(2-3x\right)^{12}\)
\(\Leftrightarrow\orbr{\begin{cases}2-3x=0\\2-3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{3}\end{cases}}\)
a)√16 -√x2+3x =0
b)3x-1-√4x2-12x+9 =0
c)√2x2-10x+11 = √x2-6x+8
a:
ĐKXĐ: \(x^2+3x>=0\)
=>x(x+3)>=0
=>\(\left[{}\begin{matrix}x>=0\\x< =-3\end{matrix}\right.\)
\(\sqrt{16}-\sqrt{x^2+3x}=0\)
=>\(\sqrt{x^2+3x}=\sqrt{16}\)
=>x^2+3x=16
=>x^2+3x-16=0
\(\text{Δ}=3^2-4\cdot1\cdot\left(-16\right)=9+64=73>0\)
Do đó: Phương trình có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{73}}{2}\\x_2=\dfrac{-3+\sqrt{73}}{2}\end{matrix}\right.\)
b:
ĐKXĐ: \(x\in R\)
\(3x-1-\sqrt{4x^2-12x+9}=0\)
=>\(\sqrt{\left(2x-3\right)^2}=3x-1\)
=>\(\left\{{}\begin{matrix}3x-1>=0\\\left(3x-1\right)^2=\left(2x-3\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(x+2\right)\left(5x-4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=\dfrac{4}{5}\left(nhận\right)\end{matrix}\right.\)
c:
ĐKXĐ: \(\left\{{}\begin{matrix}x^2-6x+8>=0\\2x^2-10x+11>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\x< =2\end{matrix}\right.\\\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=\dfrac{5+\sqrt{3}}{2}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=4\end{matrix}\right.\)
\(\sqrt{2x^2-10x+11}=\sqrt{x^2-6x+8}\)
\(\Leftrightarrow2x^2-10x+11=x^2-6x+8\)
=>\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=3(loại) hoặc x=1(nhận)
giải phương trình
a,\(\dfrac{3x-11}{11}-\dfrac{x}{3}=\dfrac{3x-5}{7}-\dfrac{5x-3}{9}\)
\(\dfrac{3x-11}{11}-\dfrac{x}{3}=\dfrac{3x-5}{7}-\dfrac{5x-3}{9}\)
\(\Rightarrow\dfrac{3\left(3x-11\right)}{33}-\dfrac{11x}{33}=\dfrac{9\left(3x-5\right)}{63}-\dfrac{7\left(5x-3\right)}{63}\)
\(\Rightarrow\dfrac{3\left(3x-11\right)-11x}{33}=\dfrac{9\left(3x-5\right)-7\left(5x-3\right)}{63}\)
\(\Rightarrow\dfrac{9x-33-11x}{33}=\dfrac{27x-45-35x+21}{63}\)
\(\Rightarrow\dfrac{-2x-33}{33}=\dfrac{-8x-24}{63}\)
\(\Rightarrow63\left(-2x-33\right)=33\left(-8x-24\right)\)
\(\Rightarrow-126x-2079=-264x-792\)
\(\Rightarrow-126x+264x=-792+2079\)
\(\Rightarrow138x=1287\)
\(\Rightarrow x=\dfrac{1287}{138}\)
\(\Rightarrow x=\dfrac{429}{46}\)