Cho đa thức: f(x) = -15x3 + 5x4 - 4x2 + 8x2 - 9x3 - x4 + 15 - 7x3. Tính f(1) và f(-1).
Cho đa thức f(x) = -15x3 + 5x4 – 4x2 +8x2 – 9x3 – x4 + 15 – 7x3 Tính f(1) ; f(-1)
f(1)= -8
f(-1)= 38
học tốt !!!~~~~~
Cho đa thức: f(x) = -15x3 + 5x4 - 4x2 + 8x2 - 9x3 - x4 + 15 - 7x3. Thu gọn đa thức trên
Ta có:
f(x) = -15x3 + 5x4 - 4x2 + 8x2 - 9x3 - x4 + 15 - 7x3
= (5x4 - x4) - (15x3 + 9x3 + 7x3) + (-4x2 + 8x2) + 15
= 4x4 - 31x3 + 4x2 + 15
Cho đa thức P(x) = -9x3 + 5x4 + 8x2 - 15x3 - 4x2 - x4 + 15 - 7x3
Tính P(1), P(0), P(-1)
P(x)=-31x^3+4x^4+4x^2+15=4x^4-31x^3+4x^2+15
P(1)=4-31+4+15=23-31=-8
P(0)=15
P(-1)=4+31+4+15=56
Cho hai đa thức:
f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - 1/4 x
g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - 1/4
Tính f(x) + g(x) và f(x) – g(x)
* Ta có:
f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - 1/4 x
= x5 – (3x2 – x2) + 7x4 – 9x3 -1/4.x
= x5 – 2x2 + 7x4 – 9x3 -1/4.x
= x5 + 7x4 – 9x3 – 2x2 - 1/4
g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - 1/4
= 5x4 –x5+ (x2 + 3x2) – 2x3 – 1/4
= 5x4 – x5 + 4x2 – 2x3 – 1/4
= -x5 + 5x4 – 2x3 + 4x2 - 1/4
* f(x) + g(x)
* f(x) - g(x)
cho hai đa thức:
A(x) = x5 – 3x2 + 7x4 – 9x3 + x2 – ¼ x
B(x) = 5x4 – x5 + x2 – 2x3 +3x2 – ¼
a, thu gọn và sắp xếp đa thức trên lũy thừ giảm dần của 1 biến
b, tính f(x) + A(x) + B(x); g(x) = A(x) – B(x)
c, tính giá trị của đa thức g(x) tại x = -1
b)
Sửa đề: f(x)=A(x)+B(x)
Ta có: f(x)=A(x)+B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) Ta có: G(x)=A(x)-B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x+x^5-5x^4+2x^3-4x^2+\dfrac{1}{4}\)
\(=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)
M(x) = 5x4 + 8x2 - 9x3 – 12x - 6 và N(x) = -5x2 + 9x3 - 5x4 + 12x - 8 a) Tìm đa thức P(x) sao cho P(x) = M(x) + N(x) b) Tìm đa thức Q(x) sao cho M(x) = N(x) + Q(x) ai giúp mik với !!!!!!!!!
`a,`
`P(x)=M(x)+N(x)`
`P(x)=`\(\left(5x^4+8x^2-9x^3-12x-6\right)+\left(-5x^2+9x^3-5x^4+12x-8\right)\)
`P(x)= 5x^4+8x^2-9x^3-12x-6-5x^2+9x^3-5x^4+12x-8`
`P(x)=(5x^4-5x^4)+(-9x^3+9x^3)+(8x^2-5x^2)+(-12x+12x)+(-6-8)`
`P(x)=3x^2-14`
`b,`
`M(x)=N(x)+Q(x)`
`-> Q(x)=M(x)-N(x)`
`-> Q(x)=(5x^4+8x^2-9x^3-12x-6)-(-5x^2+9x^3-5x^4+12x-8)`
`Q(x)=5x^4+8x^2-9x^3-12x-6+5x^2-9x^3+5x^4-12x+8`
`Q(x)=(5x^4+5x^4)+(-9x^3-9x^3)+(8x^2+5x^2)+(-12x-12x)+(-6+8)`
`Q(x)=10x^4-18x^3+13x^2-24x+2`
Bài 1:
f(x)=2x4+3x2-x+1-x2-x4-6x3
g(x)=10x2+3-x4-4x2+4x-2x2
a,Thu gọn đa thức f(x).g(x) và sắp xếp các hạng tử của mỗi đa thức lũy thừa giảm dần của biến
b,Tính f(x)+g(x)
c,Gọi h(x)=f(x)+g(x),tìm nghiệm của đa thức h(x)
Bài 2:
P(x)=x99-100x98+100x97-100x96+...+100x-1
Tính P(99)
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
Tìm a và b để đa thức f(x) = x 4 – 9 x 3 + 21 x 2 + ax + b chia hết cho đa thức g(x) = x 2 – x – 2
A. a = -1; b = 30
B. a = 1; b = 30
C. a = -1; b =-30
D. a = 1; b = -30
Ta có
Phần dư của phép chia f(x) cho g(x) là R = (a – 1)x + b + 30
Để phép chia trên là phép chia hết thì R = 0 với mọi x
ó (a – 1)x + b + 30 = 0 với mọi x
ó a - 1 = 0 b + 30 = 0 ó a = 1 b = - 30
Vậy a = 1; b = -30
Đáp án cần chọn là: D
Tìm hệ số cao nhất của đa thức k(x) biết f(x) + k(x) = g(x) và f ( x ) = x 4 - 4 x 2 + 6 x 3 + 2 x - 1 ; g ( x ) = x + 3
A. -1
B. 1
C. 4
D. 6
Nhận thấy số hạng có lũy thừa cao nhất của biến là - x 4 nên hệ số cao nhất là -1
Chọn đáp án A