cho tam giác ABC vuông tại A, có góc b=60 độ và AB=5 cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
a/ chứng minh : tam giác ABD = tam giác EBD
b/ chứng minh tam giác ABE là tam giác đều
c/ tính độ dài cạnh BC
cho tam giác ABC vuông tại A, có góc B=60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc với BC tại E
a) chứng minh: tam giác ABD=EBD
b) chứng minh: tam giác ABE là tam giác đều
c) Tính độ dài cạnh BC
cho tam giác ABC vuông tại A, có góc b=60 độ và AB=5 cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
a/ chứng minh : tam giác ABD = tam giác EBD
b/ chứng minh tam giác ABE là tam giác đều
c/ tính độ dài cạnh BC
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
-Tham khảo-
a, Xét tam giác ABD và tam giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD là phân giác của ABC)
=> tam giác ABD=tam giác EBD ( cạnh huyền-góc nhọn)
b, Vì tam giác ABD= tam giác EBD ( câu a)
=> AB=EB
Xét tam giác ABE có :
AB=EB
=> Tam giác ABE cân tại B
Xét tam giác ABE cân tại B có :
ABE =60 độ( vì góc ABC=60 độ)
=> Tan giác ABE đều
c, Xét tam giác ABC vuông tai jS có :
góc ABC =60 độ ( giả thiết), góc BAC= 90 độ( Vì tam giác ABC vuông tại A)
=> góc C = 30 độ
Mà trong tam giác vuông , cạnh đối diện với góc 30 độ bằng nửa cạnh huền
=> 2AB = BC . Mà AB = 5 ( giả thiết)
=> BC =10
Áp dụng định lý PYTAGO vào tam giác ABC vuông tại A có :
BC^2 = AB^2 + AC^2 . Mà AB = 5 , BC =10
=> 10^2 = 5^2 + AC^2
=> 100=25 + AC^2
=> AC^2 = 75
=> AC = căn bậc 2 của 75 ( Vì mình ko đánh dấu căn bậc 2 được nên đành phải viết)
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
cho tam giác ABC vuông tại A, có góc b=60 độ và AB=5 cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
a/ chứng minh : tam giác ABD = tam giác EBD
b/ chứng minh tam giác ABE là tam giác đều
c/ tính độ dài cạnh BC
hình tự kẻ nghen:333
a) Xét tam giác ABD và tam giác EBD có
B1=B2( gt)
BD chung
BAD=BED(=90 độ)
=> tam giác ABD= tam giác EBD( ch-gnh)
b) từ tam giác ABD= tam giác EBD=> AB=EB( hai cạnh tương ứng)
=> tam giác ABE cân B mà ABC= 60 độ=> ABE đều
c) vì ABE đều=> BAE= 60 độ, AB=EB=AE
ta có BAC= BAE+EAC=90 độ
=> EAC=90-60=30 độ
vì tam giác ABC vuông tại A và có ABC=60 độ
=> ACB= 30 độ
=> ACB=EAC=> tam giác EAC cân E=> AE=EC=> AE=EC=EB=AB
ta có BC= BE+EC=> BC= 5cm+5cm=10cm
cho tam giác ABC vuông tại A, có góc b=60 độ và AB=5 cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
a/ chứng minh : tam giác ABD = tam giác EBD
b/ chứng minh AD < DC
c/ chứng minh tam giác ABE là tam giác đều
d/ tính độ dài cạnh BC
v b bghghfg fhghfhghfg
Cho tam giác ABC vuông tại A có góc B = 60 độ cạnh AB = 5 cm , tia phân giác của B cắt AC tại D. Kẻ DE vuông góc với BC(tại E)
a) Chứng minh tam giác ABD bằng tam giác EBD
b) Chứng minh tam giác ABE là tam giác đều
c) Tính độ dài BC
Để mình làm cho
xét tam giác ABD và tam giác EBD có
BD chung
ABD=EBD( vì BD là phân giác )
BAD=BED=90 độ
suy ra tam giác ABD=tam giác EBD ( cạnh huyền - góc nhọn)
vậy tam giác ABD = tam giác EBD
b vì tam giác ABD =tam giác EBD ( cm câu a)
suy ra AB = EB ( 2 cạnh tương ứng)
suy ra tam giác ABE cân tại b
mà góc B = 60 độ
suy ra tam giác ABE đều
Vậy tam giác ABE đều
c từ từ mình đang nghĩ
Cho tam giác ABC vuông tại A, có B=60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D . Kẻ DE vuông góc với BC (EeBC) a. Chứng minh tam giác ABD= tam giác EBD b). Chứng minh tam giác ABE là tam giác đều c). Chứng minh tam giác AEC cân d). Chứng minh độ dài cạnh AC a. Chứng minh: ABD = EBD. b. Chứng minh: ABE là tam giác đều. c. Tính độ dài cạnh BC. d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
Cho tam giác ABC vuông tại A có góc B bằng 60 độ và AB bằng 5 cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) chứng minh tam giác ABD bằng tam giác EBD.
b)Chứng minh tam giác ABE là tam giác đều.
c) Tính độ dài cạnh BC.
Cho tam giác ABC, vuông tại B có B = 60 độ, AB = 5cm, BC = 10cm. Tia phân giác của B cắt AC tại D. Kẻ DE vuông góc BC tại E
a/ Cm: tam giác ABC = EBD
b/ Cm: tam giác ABE là tam giác đều
c/ Tính độ dài cạch AC
giúp mik vs!
chịu................................................................................ ko hiểu
Cho Tam giác ABC vuông tại A . Vẽ tia phân giác góc B cắt AC tại D ( D thuộc AC) . Kẻ ĐỂ vuông góc với BC tại E
a) Chứng minh: tam giác ABD = tam giác EBD
b) Chứng minh BD là đường trung trực của đoạn thẳng AE.
c) Đường thẳng AB cắt đường thẳng DE tại F . Chứng minh AE // CF
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF