Chứng minh với mọi số nguyên n thì A = n 4 - 2 n 3 - n 2 + 2n chia hết cho 24.
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
chứng minh với mọi số nguyên n thì (n/3+n^2/2+n^3/6) có giá trị nguyên
thì sao? sao ko thấy câu hỏi?
chứng minh rằng với mọi số tự nhiên A thì giá trị của biểu thức sau là 1 số nguyên
A= n^4/24+n^3/4+11n^2/24+3/4
chứng minh rằng với mọi số tự nhiên A thì giá trị của biểu thức sau là 1 số nguyên
A= n^4/24+n^3/4+11n^2/24+3/4
Chứng minh rằng với mọi số nguyên dương n thì :4n+2 -3n+2 - 4n - 3n chia hết cho 30
4n+2 -3n+2 - 4n - 3n
= 4n+2 - 4n - 3n+2 - 3n
= 4n ( 42 - 1 ) - 3n ( 32 + 1 )
= 4n .15 - 3n.10
= 4n-1.4.15 - 3n-1.3.10
= 4n-1.60 - 3n-1.30
= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )
chứng minh rằng với mọi số nguyên n thì n^4+2n^3+2n^2+2n+1 không là số nguyên dương
giúp mình với nh ^^
\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)
Em xin mạn phép sửa đề: Chứng minh với mọi số nguyên n thì A (là cái biểu thức bên trên) luôn không âm.
Ta có: \(A=n^2\left(n+1\right)^2+\left(n+1\right)^2=\left(n+1\right)^2\left(n^2+1\right)\ge0\)
Suy ra đpcm.
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương