Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Anh Thư
Xem chi tiết
Nguyễn Huy Tú
23 tháng 9 2021 lúc 4:54

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)

\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)

Dấu ''='' xảy ra khi a = b 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 10 2018 lúc 6:09

a  ≥  0; b  ≥  0 và  a  <  b  ⇒  b  > 0

Suy ra:  a  +  b  > 0 và  a  -  b  < 0

( a  +  b  )( a  -  b ) < 0

⇒ a 2 - b 2  < 0 ⇒ a – b < 0 ⇒ a < b

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2017 lúc 4:01

a ≥ 0; b  ≥  0 và a < b ⇒ b > 0

Ta có:  a   ≥ 0;  b   ≥  0 suy ra:  a  +  b  > 0     (1)

Mặt khác: a – b = a 2 - b 2  = ( a  +  b  )( a -  b  )

Vì a < b nên a – b < 0

Suy ra: ( a  +  b  )( a  -  b  ) < 0     (2)

Từ (1) và (2) suy ra:  a  -  b  < 0 ⇒  a  <  b

Dảk Dảk Lmao Lmao
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:19

a<b

\(\Leftrightarrow\sqrt{a}< \sqrt{b}\)

Dương Thúy Vy
Xem chi tiết
Minh Triều
18 tháng 7 2015 lúc 20:15

áp dụng BĐT cô-si ta có:

\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)

Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)

Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1

 

Minh Triều
18 tháng 7 2015 lúc 20:15

cái câu hỏi 2 tớ ko bik đúng ko 

Mr Lazy
18 tháng 7 2015 lúc 20:25

Đề yêu cầu chứng minh bất đẳng thức Côsi chứ không phải áp dụng nó!

Biến đổi tương đương bình thường thôi:

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Do bất đẳng thức cuối cùng đúng nên bất đẳng thức ban đầu đúng. Một cách trình bày khác là ghi ngược từ cuối lên đầu!

Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow a=b\)

Nguyễn Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đức Minh
23 tháng 4 2017 lúc 18:54

Nếu n= 2, tức có hai giá trị x1x2, và từ giả thiết ở trên, ta có:

điều phải chứng minh - ở đây \(x_1=a;x_2=b\)

nguyễn ngọc thúy vi
28 tháng 5 2017 lúc 16:08

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)

-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân

Nguyễn Như Quỳnh
Xem chi tiết
Nguyễn thành Đạt
20 tháng 3 2023 lúc 20:46

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

Đinh Cẩm Tú
Xem chi tiết
👁💧👄💧👁
8 tháng 7 2021 lúc 14:26

Ta cần c/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\) (a;b ≥ 0)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\\ \Leftrightarrow\dfrac{a^2+2ab+b^2}{4}\ge ab\\ \Leftrightarrow a^2+2ab+b^2\ge4ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(\text{luôn đúng }\forall a;b\ge0\right)\)

Vậy BĐT Cô-si cho 2 số không âm được c/m.