a ≥ 0; b ≥ 0 và a < b ⇒ b > 0
Ta có: a ≥ 0; b ≥ 0 suy ra: a + b > 0 (1)
Mặt khác: a – b = a 2 - b 2 = ( a + b )( a - b )
Vì a < b nên a – b < 0
Suy ra: ( a + b )( a - b ) < 0 (2)
Từ (1) và (2) suy ra: a - b < 0 ⇒ a < b
a ≥ 0; b ≥ 0 và a < b ⇒ b > 0
Ta có: a ≥ 0; b ≥ 0 suy ra: a + b > 0 (1)
Mặt khác: a – b = a 2 - b 2 = ( a + b )( a - b )
Vì a < b nên a – b < 0
Suy ra: ( a + b )( a - b ) < 0 (2)
Từ (1) và (2) suy ra: a - b < 0 ⇒ a < b
Cho hai số a, b không âm. Chứng minh: Nếu a < b thì a < b
Cho hai số a, b không âm. Chứng minh: Nếu a < b thì √aa < √b
Cho lời giải
cho hai số a,b không âm. chứng minh:
a) nếu a<b thì căn bậc hai của a < căn bậc hai của b
b) nếu căn bậc hai của a < căn bậc hai của b thì a<b
Cho hai số a , b không âm . Chứng minh
a, Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b, Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
Cho hai số a , b không âm . Chứng minh :
a) Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
cho 2 số a,b không âm .Chứng minh :
a, nếu a<b thì căn a < căn b
b, nếu căn a < căn b thì a <b
Cho 2 số a,b không âm . Chứng minh :
a) Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) Nếu \(\sqrt{a}< \sqrt{b}\)thì a < b
Bài 1 . Cho 2 số a , b ko âm .chứng minh
a) Nếu a < b thì √a < √b
b) Nếu √a < √b thì a < b