Cho tam giác ABC. Tia phân giác của góc A cắt BC tại D. Tính số đo A D C ^ biết B ^ - C ^ = 20 o
A. 80 °
B. 110 °
C. 100 °
D. 105 °
Bài 3: Cho tam giác ABC cân tại A . Gọi D là trung điểm BC . Qua A vẽ d// BC . CMR
a; Tam giác ABD = ACD
b; AD là tia phân giác của góc BAC
c; AD vuông góc d
Bài 4: Cho tam giác ABC có góc A= 60độ Tia phân giác của góc ABC cắt tia phân giac của góc ACB ở I
a; Cho biết tam giác ABC= 2 tam giác ACB. Tính góc ACB
b; Tính số đo góc BIC
Cho tam giác ABC có B = 70°;C= 30°. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC ( H∈BC ) .
a ) Tính số đo BAC
b ) Tính số đo ADH
a: \(\widehat{BAC}=180^0-70^0-30^0=80^0\)
Cho tam giác ABC có góc A = 80 độ. Tia phân giác Góc A cắt BC tại D. Tia phân giác góc D của tam giác ABD song song với AC. Tính số đo góc ABC, góc ACB
cho tam giác ABC vuông tại A, đường cao AH ( AH thuộc BC ). tia phân giác của HAB cắt cạnh BC tại D, tia phân giác của góc HAC cắt cạnh BC tại E. Trên cạnh AC lấy điểm F sao cho AF=AH
a) tính số đo góc DAE
b)chứng minh tam giác AEH= tam giác AEF
c) chứng minh AB//EF
a: \(\widehat{DAE}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{HAC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
b: Xét ΔAEH và ΔAEF có
AE chung
\(\widehat{HAE}=\widehat{FAE}\)
AH=AF
Do đó: ΔAEH=ΔAEF
c: Ta có: ΔAEH=ΔAEF
nên \(\widehat{AHE}=\widehat{AFE}=90^0\)
=>EF⊥AC
mà AC⊥AB
nên EF//AB
Cho tam giác ABC có B - C = 180 . Tia phân giác góc A cắt BC tại D . Tính số đo góc ADC ? góc ADB ?
Xét tam giác ABC: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}\)
Mặt khác: \(\widehat{B}-\widehat{C}=18^0\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\dfrac{180^0-\widehat{A}+18^0}{2}=99^0-\dfrac{\widehat{A}}{2}\\\widehat{C}=99^0+\dfrac{\widehat{A}}{2}-18^0=81^0-\dfrac{\widehat{A}}{2}\end{matrix}\right.\)
Xét tam giác ABD: \(\widehat{ADC}=\widehat{BAD}+\widehat{B}=\dfrac{\widehat{A}}{2}+99^0-\dfrac{\widehat{A}}{2}=99^0\)
\(\widehat{ABD}=180^0-\widehat{ADC}=81^0\)
Cho tam giác ABC có A= 80 độ ; B=70 độ. Tia phân giác của góc A cắt BC tại D ( D thuộc BC ).
a) tam giác ABD là tam giác gì? Vì sao?
b) Tính ADC, ACD
c) Tính số đo góc ngoài tại đỉnh B.
a) Xét tam giác ABC. Ta có:
Vì AD là tia phân giác của góc A nên:
\(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=40^{^o}\)
\(\widehat{ADB}=180^o-70^o-40^o=70^o\)
Vì \(\widehat{ADB}=\widehat{ABD}=70^o\)nên ABD là tam giác cân.
b)Vì \(\widehat{ADB}\)kề bù với \(\widehat{ADC}\)nên \(\widehat{ADC}=180^o-70^o=110^o\)
Do tam giác ACD là tam giác nên \(\widehat{ACD}=180^o-40^o-110^o=30^o\)
c) Đặt đỉnh ngoài của B là B1.
Ta có: \(\widehat{B_1}=180^o-70^o=110^o\)
Cho tam giác abc vuông tại a. Biết gopcs B= 60*
a. Tính số đo góc C của tam giác abc
b.Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm H sao cho BH= BA. Chứng minh DH vuông góc BC
cho tam giác ABC vuông tại A, đường cao AH ( AH thuộc BC ). tia phân giác của HAB cắt cạnh BC tại D, tia phân giác của góc HAC cắt cạnh BC tại E. Trên cạnh AC lấy điểm F sao cho AF=AH
a) tính số đo góc DAE
b)chứng minh tam giác AEH= tam giác AEF
c) chứng minh AB//EF