ChoA(1 ;2 ;3),B(-4 ;0 ;1) , C(-2 ;3 ;1)vàD(-3 ;2 ;-1). Tọa độ điểm A’ đối xứng với A qua mặt phẳng (BCD) là
A. A ' - 17 47 ; 16 47 ; 19 47
B. A ' - 187 53 ; 160 53 ; 199 53
C. A ' - 187 53 ; 266 53 ; 199 53
D. A ' 17 47 ; - 16 47 ; - 19 47
420chia hết cho A và700chia het choA
480chia hết cho A và 600 chia hết choA
105chia hết choA;175chia hết choA;385chia hết choA
548chia hết choA và 638chia hết choA
Tất cả các phần trên đều thuộc dạng ước chung.
a) \(A\inƯC\left(420;700\right)\)
b) \(A\inƯC\left(480;600\right)\)
c) \(A\inƯC\left(105;175;385\right)\)
d) \(A\inƯC\left(548;638\right)\)
1.Tìm xϵN sao cho
a.3n+14 ⋮(n+2)
\(3n+14⋮n+2\)
=>\(3n+6+8⋮n+2\)
=>\(8⋮n+2\)
=>\(n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)
mà n>=0
nên \(n\in\left\{0;2;6\right\}\)
ChoA =11^9+11^8+11^7+...+11+1
A=119+118+117+...+11+1
=>11A= 1110+119+118+...+112+11
=> 11A-A= (1110+119+118+...+112+11)-(119+118+117+...+11+1)
=> 10A= 1110-1
=>A= (1110-1):10
Ta thay: 1110 co tan cung la 1=> 1110-1 co tan cung la 0=> (1110-1):10 co tan cung la 0 chia het cho 5
Vay A chia het cho 5
Nói 1 câu bn choa là bá đạo nhứt
Trả lời : Em xin lỗi anh , em có thai vs thằng bạn anh rồi .
Hok_Tốt
Tk mk nha .
#Thiên_Hy
bà nội mày ko bt dạy mày để mày đi cắn người
t.i.c.k nha chỉ là chế thôi ko áp dụng cũng đc
choA=1/5 mu2+1/6mu2+1/7mu2+...+1/2004mu2 chung minh rang1/65<A<1/4
A = \(\dfrac{1}{5^2}\) + \(\dfrac{1}{6^2}\) + \(\dfrac{1}{7^2}\) +.................+ \(\dfrac{1}{2004^2}\)
A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\) + \(\dfrac{1}{7.7}\)+..............+ \(\dfrac{1}{2004.2004}\)
Vì \(\dfrac{1}{5}>\dfrac{1}{6}>\dfrac{1}{7}>...........>\dfrac{1}{2004}\)
nên ta có : \(\dfrac{1}{5.5}>\dfrac{1}{5.6}>\dfrac{1}{6.6}>\dfrac{1}{6.7}>\dfrac{1}{7.7}>.....>\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)
\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2004.2004}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+..+\dfrac{1}{2004.2005}\)
A > \(\dfrac{1}{5}\) \(-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+....+\dfrac{1}{2004}-\dfrac{1}{2005}\)
A > \(\dfrac{1}{5}\) - \(\dfrac{1}{2005}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{24060}\)
\(\dfrac{1}{65}\) = \(\dfrac{1}{5}\) - \(\dfrac{12}{65}\)
Vì \(\dfrac{12}{65}\) > \(\dfrac{12}{24060}\) nên A> \(\dfrac{1}{65}\) ( phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn)
Tương tự ta có :
A = \(\dfrac{1}{5.5}\) + \(\dfrac{1}{6.6}\)+ \(\dfrac{1}{7.7}\)+......+\(\dfrac{1}{2004.2004}\) >\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+.....\(\dfrac{1}{2003.2004}\)
A < \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +......+ \(\dfrac{1}{2003}\) - \(\dfrac{1}{2004}\)
A < \(\dfrac{1}{4}-\dfrac{1}{2004}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{65}< \)A < \(\dfrac{1}{4}\) (đpcm)
choA=1/2^2+1/4^2+...+1/2018^2. CMR A>1/3
1 + 1= ?
mình sẽ ko nói choa các bạn bít kết quả là 3 đâu
( 2 + \(\dfrac{2}{3}-\dfrac{1}{4}\)) x \(\dfrac{1}{5}\)
EM TICK CHOA NÀ
( 2/1+ 2/3 -1/4 ) X 1/5
= ( 4/3 -1/4) X 1/5
= 13/12 X1/5
= 13/60
ChoA=1+1/3+1/6+1/8+...+2/2004.2005
Chứng minh A<2
xem lại đề. số hạng cuối tử số tự nhiên =2; ??? mẫu số cũng ko theo quy luật của 3 số hạng đầu
choA= 1+ 1/2+1/3+...................+1/100
cmr Akhông phải số tự nhiên
Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!