Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quý Vượng
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 17:41

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

Ngô Chí Tài
Xem chi tiết
Ngô Chí Tài
21 tháng 10 2021 lúc 22:47

giúp tớ với

Khách vãng lai đã xóa
trường giang
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Khách vãng lai đã xóa
phạm mạnh hùng
Xem chi tiết
Nguyễn Minh Đăng
25 tháng 10 2020 lúc 17:32

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

Khách vãng lai đã xóa
Lí tự trọng
19 tháng 11 2023 lúc 19:43

Rrffhvyccbvfccvbbbhhgg

Nguyễn Huyền Trang
Xem chi tiết
Mèo Mun
Xem chi tiết
Công Chúa Ori
25 tháng 10 2016 lúc 18:39

toán chứng minh dễ mà bn

o0o_Thiên_Thần_Bé_Nhỏ_o0...
Xem chi tiết
Thanh Tùng DZ
25 tháng 10 2016 lúc 18:35

a)đặt tên biểu thức là C . Ta có :
C =  1 + 4 + 42 + 43 + ... + 42012 

C = ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 42010 + 42011 + 42012 )

C = 21 + 43 . ( 1 + 4 + 42 ) + ... + 42010 . ( 1 + 4 + 42 )

C = 21 + 43 . 21 + ... + 42010 . 21

C = 21 . ( 1 + 43 + ... + 42010 ) 

=> C chia hết cho 21

b) đặt tên biểu thức là B . Ta có :

B =  1 + 7 + 72 + ... + 7101

B = ( 1 + 7 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )

B = 8 + 72 . ( 1 + 7 ) + ... + 7100. ( 1 + 7 )

B = 8 + 72 . 8 + ... + 7100 . 8

B = 8 . ( 1 + 7+ ... + 7100 )

=> B chia hết cho 8

tương tự

cà thái thành
Xem chi tiết
tth_new
11 tháng 12 2018 lúc 6:53

Gọi tổng trên là T (tượng trưng cho tth :v)

Ta có: \(T=\left(7^0+7^1\right)+\left(7^2+7^3\right)+...+\left(7^{2011}+7^{2012}\right)\)

\(=1\left(7^0+7^1\right)+7^2\left(7^0+7^1\right)+...+7^{2011}\left(7^0+7^1\right)\)

\(=8\left(1+7^2+...+7^{2011}\right)⋮8^{\left(đpcm\right)}\) 

cà thái thành
11 tháng 12 2018 lúc 14:39

72010 thôi nhé chứ ko phải 72012 đâu sorry

PHAN QUỐC BẢO
Xem chi tiết
PHAN QUỐC BẢO
26 tháng 8 2019 lúc 10:23

vghghghgh

Mika Yuuichiru
Xem chi tiết