Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tất Thắng
Xem chi tiết
Nguyễn Văn Tùng
Xem chi tiết
NGUYEN HAI YEN
Xem chi tiết
Phước Nguyễn
4 tháng 4 2016 lúc 22:20

Ta có:

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

Nhân cả hai vế của đẳng thức trên với  \(a^2+b^2+c^2\ne0\)  (do  \(a,b,c\ne0\)), ta được:

\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)  \(\left(1\right)\)

Khi đó, ta khai triển vế phải của \(\left(1\right)\)  thì  \(\left(1\right)\) trở thành:

\(VP=x^2+\frac{a^2y^2}{b^2}+\frac{a^2z^2}{c^2}+\frac{b^2x^2}{a^2}+y^2+\frac{b^2z^2}{c^2}+\frac{c^2x^2}{a^2}+\frac{c^2y^2}{b^2}+z^2\)

So sánh vế trái của đẳng thức \(\left(1\right)\), ta dễ dàng nhận thấy cả hai vế có cùng đa thức \(x^2+y^2+z^2\) nên ta có thể viết lại  \(\left(1\right)\)  như sau:

\(\frac{a^2y^2}{b^2}+\frac{a^2z^2}{c^2}+\frac{b^2x^2}{a^2}+\frac{b^2z^2}{c^2}+\frac{c^2x^2}{a^2}+\frac{c^2y^2}{b^2}=0\)

\(\Leftrightarrow\)  \(\left(\frac{b^2x^2}{a^2}+\frac{c^2x^2}{a^2}\right)+\left(\frac{c^2y^2}{b^2}+\frac{a^2y^2}{b^2}\right)+\left(\frac{a^2z^2}{c^2}+\frac{b^2z^2}{c^2}\right)=0\)

\(\Leftrightarrow\)   \(\frac{x^2}{a^2}\left(b^2+c^2\right)+\frac{y^2}{b^2}\left(c^2+a^2\right)+\frac{z^2}{c^2}\left(a^2+b^2\right)=0\)  \(\left(2\right)\)

Mặt khác, ta cũng có  \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\)   \(a^2+b^2\ne0;\)  \(b^2+c^2\ne0\)  và  \(c^2+a^2\ne0\)  \(\left(3\right)\)

Từ  \(\left(2\right)\)  và  \(\left(3\right)\), ta dễ dàng suy ra được  \(x=y=z=0\)

Vậy,  \(x^{2011}+y^{2011}+z^{2011}=0\)

Lê Phúc Thuận
Xem chi tiết
Đinh Đức Hùng
16 tháng 2 2018 lúc 19:46

Ez z còn

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Tà thấy \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2};\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2};\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}>0\forall a;b;c\ne0\)

\(\Rightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right);y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right);z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ge0\forall a;b;c\ne0\)

\(\Rightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\)

\(\Rightarrow x^{2011}+y^{2011}+z^{2011}=0\)

dream XD
Xem chi tiết
Lê Thị Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2022 lúc 14:25

\(2A=2+2^2+...+2^{2011}\)

=>\(A=2^{2011}-1< B\)

Nguyễn Thị Hương Trà
Xem chi tiết
o0o đồ khùng o0o
6 tháng 1 2017 lúc 13:27

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

hà ngọc ánh
Xem chi tiết
YangJiNguyen
Xem chi tiết
Bùi Minh Quân
Xem chi tiết