Cho số phức z( 3 - 2i)(1 + i) 2 . Môđun của w = i z + z ¯ là
A.2.
B. 2 2
C. 1.
D. 2
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z = 1 + 2 i , tính môđun của số phức w = 2 - z ¯ z - 1 .
A. 1 2
B. 1 2
C. 3 2
D. 5 2
Cho số phức z = 1 + 2 i , tính môđun của số phức w = 2 − z ¯ z − 1
A. 1 2
B. 31 2
C. 51 2
D. 1 2
Cho số phức z = 1 + 2 i , tính môđun của số phức w = 2 - z ¯ z - 1
Cho số phức z thỏa mãn điều kiện: z - 1 + 2 i = 5 và w = z + 1 + i có môđun lớn nhất. Số phức z có môđun bằng:
A. 2 5
B. 3 2
C. 6
D. 5 2
Cho số phức z thỏa mãn điều kiện: z - 1 + 2 i = 5 và w = z +1 +i có môđun lớn nhất. Số phức z có môđun bằng:
A. 6
B. 3 2
C. 5 2
D. 2 5
Cho số phức z thỏa mãn điều kiện | z - 1 + 2 i | = 5 và w=z+1+i có môđun lớn nhất. Số phức z có môđun bằng
A. 2 5
B. 3 2
C. 6
D. 5 2
Cho số phức z thỏa mãn: z - 2 - 2 i = 1 . Số phức z-i có môđun nhỏ nhất là:
A. 5 - 1
B. 5 + 1
C. 5 + 2
D. 5 - 2