cho hình vẽ biết, góc M+góc H+góc K=360 độ. Chứng minh Hx//Ky
1. Phân tích đa thức thành nhân tử:
(x+y-2z)3+(y+z-2x)3+(x+z-2y)3
2. Cho hình bình hành ABCD. H, K là hình chiếu của A và C lên BD. M, N là hình chiếu của D và B lên C. Chứng minh MNHK là hình bình hành
3. Hình chữ nhật ABCD. BH vuông góc AC. M là trung điểm của AH. K là trung điểm của CD. Chứng minh góc BMK = 90o
4. Hình chữ nhật ABCD. Vẽ BH vuông góc AC. Trên tia đối BH lấy E sao cho BE = AH. Chứng minh góc ADE = 45 độ
Bài 3:
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Biết MHIK là hình chữ nhật. Chứng minh MIPE là hình thoi.
Cho 2 điểm H, K thuộc đường thẳng d sao cho HK = 16 cm. Qua H, K dựng các tia Hx; Ky vuông góc với d thuộc cùng một nửa mặt phẳng bờ d. Lấy A thuộc tia Hx, lấy điểm B thuộc Ky sao cho AH = KB = 6m . Gọi M là điểm thuộc d . Tìm GTNN của MA +MB ?
Cho đường thẳng d. Trên d lấy hai điểm K,H sao cho HK=16cm. Qua H và K dựng các tia Hx và Ky vuông góc với d cùng thuộc một nửa mặt phẳng bờ d. Lấy A thuộc Hx, B thuộc Ky sao cho AH = BK = 6cm. M là một điểm bất kỳ trên d. Khi đó giá trị nhỏ nhất của MA + MB khi M di động trên d là bao nhiêu cm ?
Cho tam giác ABC , M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA . Chứng minh rằng :
a) AC = EB và AC song song BE
b) Gọi I là một điểm trên AC ; K là 1 điểm trên EB sao cho AI = EK . chứng minh 3 điểm I , M , K , thẳng hàng
c) Từ E kẻ EH vuông góc BC ( H thuộc BC ) Biết góc HBE = 50 độ , góc MEB = 25 độ . Tính góc HEM và góc BME.
Vẽ hình nha!
Cần gấp ạ,ai nhanh nhất tớ tk cho!
a) Xét ΔAMC;ΔBMEΔAMC;ΔBME có :
BM=MC(gt)BM=MC(gt)
AMCˆ=EMBˆAMC^=EMB^ (đối đỉnh)
AM=ME(gt)AM=ME(gt)
=> ΔAMC=ΔEMB(c.g.c)ΔAMC=ΔEMB(c.g.c)
=> AC=BEAC=BE (2 cạnh tương ứng)
=> BEMˆ=AMCˆBEM^=AMC^ (2 góc tương ứng)
Mà :2 góc này ở vị trí so le trong
=> AC //BE(đpcm)AC //BE(đpcm)
b) Xét ΔAMI;ΔEMKΔAMI;ΔEMK có :
AM=ME(gt)AM=ME(gt)
MAIˆ=MEKˆ(slt)MAI^=MEK^(slt)
AI=EK(gt)AI=EK(gt)
=> ΔAMI=ΔEMK(c.g.c)ΔAMI=ΔEMK(c.g.c)
=> KM=MIKM=MI (2 cạnh tương ứng)
=> M là trung điểm của KI
Do đó : I, M, K thẳng hàng (đpcm)
XIN LỖI VÌ TRÊN ĐÂY MÌNH KHÔNG BIẾT CÁCH VẼ HÌNH
Vì góc HME là góc ngoài của tam giác BME nên: HME= MBE+ MEB = 50 độ+ 25 độ = 75 độ Xét tam giác vuông có H1= 90 độ, ta có HME+HEM= 90 độ => Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ Theo định lí tổng 3 góc trong tam giác BME, ta có: BME+ MBE+ BEM= 180 độ => BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ .
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Gọi E là điểm đối xứng của I qua K. Biết MHIK là hình chữ nhật. Chứng minh tứ giác MIPE là hình thoi.
cho tam giác DEF vuông tại D . Có DE =6cm , EF=10cm
a) tính độ dài DF
b)vẽ tia phân giác ÊM của góc DEF (M thuộc DF). Từ M vẽ MH vuông góc với EF tại H . Chứng minh tam giác DEM= tam giác HEM
c) trên tia ED lấy K sao cho EF=EK
chứng minh: K,M,H thẳng hàng
b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM
C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang
cho góc xoy =90 độ . trên tia ox lấy điêm A ,trên tia oy lấy điêm B . hai đường trung trực Hx; Ky tương ứng của OA ; OB , cắt nhau tại M (H thuộc OA ; K thuộc OB) c/m A ; M ; B thẳng hàng
Cho tam giác ABC vuông tại A, góc ABC = 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc với BC (H thuộc BC)
a, Chứng minh tam giác ABE = tam giác HBE
b, Qua H vẽ HK // BE (K thuộc AC) Chứng minh AK//CF
c, HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM = NC
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc hBE
=>ΔABE=ΔHBE
c: Xét ΔBHM vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBM chung
=>ΔBHM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
mà BN là đường phân giác
nên N là trung điểm của CM
=>NM=NC