Cho a phần b là psố chưa tối giản, CMR psố a+b phần b cũng chưa tối giản ( a,b thuộc Z, b khác 0)
Cho a/b chưa tối giản. CMR: a+b/b chưa tối giản ( a;b thuộc Z , b khác 0 )
gọi d = ƯCLN(a; b)
=> a chia hết cho d; b chia hết cho d
=> (a+b) chia hết cho d
=> d = ƯC(a +b ;b) => ƯCLN(a+b; b) \(\ge\) d
Mà a/b chưa tối giản => d > 1
=> ƯCLN(a+b; b) \(\ge\) d > 1
=> a+b/ b chưa tối giản
Gọi ƯCLN(a,b)=d (d \(\ne0;1;d\in Z\))
TA có:
TA có:
a/b=d.c/d.e (c;e khác 0;1 và c;e thuộc Z)
=>a+b/b=d.(c+e)/d.e chưa tối giản bởi nó còn phải rút gọn đi d nữa
a/b là psố tối giản chứng tỏ a.b/a+b cũng là phân số tối giản
Với mọi STN n , chứng tỏ B=4n+7 phần 6n+11 là psố tối giản
cho \(\frac{a}{b}\)là phân số chưa tối giản , chứng tỏ rằng phân số \(\frac{a+b}{b}\)cũng chưa tối giản ( voi a,b,c thuoc Z , b khac 0 )
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.
a,CMR với n thuộc N*, phân số sau là phân số tối giản:4n+1/6n+1
b,Cho a/b chưa là phân số tối giản, CMR các phân số dưới đây chưa là phân số tối giản:
a / a-b 2a/a-2b
c,Cho phân số A=n+1/n-3 (n thuộc Z;n khác 3)
Tìm n để A có giá trị nguyên
Tìm n để A là phân số tối giản
Cho \(\dfrac{a}{b}\) là phân số chưa tối giản. Chứng tỏ rằng phân số \(\dfrac{a+b}{b}\) cũng chưa tối giản (a,b ∈ Z ; b \(\ne\)0)
Bài 1 : Cho a/b là 1 phân số chưa tối giản . Chứng minh rằng các phân số sau chưa tối giản :
a ) a / a - b
b ) 2a / a - 2b
Bài 2 : Cho phân số A = n + 1 / n - 3 ( n thuộc Z ; n khác 3 )
a ) Tìm n để A có giá trị là một số nguyên
b ) Tìm n để A là phân số tối giản
Bài 1:
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
Cho \(\frac{a}{b}\)tối giản ( a , b thuộc Z , b khác 0 ) . CMR :\(\frac{a}{a+b}\)và \(\frac{a}{a.b}\)là tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = UCLN(a,a+b)
\(\Rightarrow\hept{\begin{cases}a⋮d\\a+b⋮d\Rightarrow b⋮d\end{cases}}\)
=> \(d\inƯC\left(a,b\right)\)
Do \(\frac{a}{b}\)là phân số tối giản
=> (a,b) = 1
=> d = 1
=> \(\frac{a}{a+b}\)là phân số tối giản
- Còn phân số \(\frac{a}{a.b}\)không phải là ps tối giản vì nó vẫn rút gọn được: \(\frac{a}{a.b}=\frac{1}{b}\)
( sai thì thôi nha )
Cho phân số \(\dfrac{a}{b}\) chưa tối giản . Chứng minh rằng phân số \(\dfrac{a+b}{b}\) chưa tối giản \(\left(a,b\in Z,b\ne0\right)\)
\(\dfrac{a}{b}\) chưa tối giản
→a⋮b.
vì a⋮b và b⋮b
→a+b⋮b
→\(\dfrac{a+b}{b}\) chưa tối giản (ĐPCM)