Cho số phức z = - 2 i - 1 . Điểm biểu diễn số phức liên hợp của z trong mặt phẳng phức là:
A. M(-1;-2).
B. M(2;-1).
C. M(-2;1).
D. M(-1;2).
Cho số phức z = - 2 i - 1 . Điểm biểu diễn số phức liên hợp của z trong mặt phẳng phức là:
A. M(-1;-2).
B. M(-1;2).
C. M(-2;1).
D. M(2;-1).
Chọn B
Ta có: z = - 2i – 1 = -1 - 2i
Số phức liên hợp của z là có phần thực là -1, phần ảo là 2.
Vậy điểm biểu diễn số phức liên hợp là M(-1;2)
Cho số phức z = 1 − 2 i . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức liên hợp của số phức z?
A. M 1 1 ; 2
B. M 2 - 1 ; 2
C. M 3 - 1 ; - 2
D. M 4 1 ; - 2
Cho số phức z = 1 − 2 i . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức liên hợp của số phức z?
A. M 1 1 ; 2
B. M 2 − 1 ; 2
C. M 3 − 1 ; − 2
D. M 4 1 ; − 2
Đáp án A.
Số phức liên hợp của z = 1 − 2 i là z ¯ = 1 + 2 i .
Do đó M 1 1 ; 2 là điểm biểu diễn của z ¯ .
Cho số phức z có điểm biểu diễn trong mặt phẳng tọa độ Oxy là điểm M 3 ; − 5 . Xác định số phức liên hợp z ¯ của z.
A. z ¯ = 3 + 5 i .
B. z ¯ = − 5 + 3 i .
C. z ¯ = 5 + 3 i .
D. z ¯ = 3 − 5 i .
Cho số phức z=25/(3+4i). Điểm biểu diễn hình học số phức liên hợp của z trong mặt phẳng Oxy là
A.M(3;-4)
B.N(2;-3)
C.P(3;-2)
D.Q(3;4)
Cho số phức z = 3 + i. Điểm biểu diễn số phức 1/z trong mặt phẳng phức là:
A.
B.
C.
D.
Cho số phức z = 3+ i. Điểm biểu diễn số phức 1/z trong mặt phẳng phức là:
A.
B.
C.
D.
Chọn A.
Ta có :
Do đó điểm biểu diễn số phức 1/z trong mặt phẳng phức là:
Cho số phức thỏa mãn z - i = z - 1 + 2 i . Tập hợp điểm biểu diễn số phức w = (2 - i) z +1 trên mặt phẳng phức là một đường thẳng. Phương trình của đường thẳng đó là
Trên mặt phẳng tọa độ, số phức liên hợp của số phức z = 2 - 4 i có điểm biểu diễn là