Cho số phức z thay đổi hoàn toàn thỏa mãn: |z-i| = |z-1+2i|. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (2-i)z+1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. -x + 7y + 9 = 0
B. x + 7y - 9 = 0
C. x + 7y + 9 = 0
D. x - 7y + 9 = 0
Cho các số phức z thỏa mãn z − i = z − 1 + 2 i . Tập hợp các điểm biểu diễn số phức w = 2 − i z + 1 trên mặt phẳng tọa độ là một đường thẳng. Phương trình đường thẳng đó là
A. x − 7 y − 9 = 0
B. x + 7 y − 9 = 0
C. x + 7 y + 9 = 0
D. x - 7 y + 9 = 0
Cho các số phức z thỏa mãn z + 1 - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3=0
B. 4x-6y-3=0
C. 4x+6y+3=0
D. 4x-6y+3=0
Cho số phức z thỏa mãn: |z|= 4. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (3+4i)z + i là một đường tròn có bán kính là:
A. 4.
B. 5.
C. 20.
D. 22.
Trên mặt phẳng phức tập hợp các số phức z = x + yi thỏa mãn |z + 2 - i| = | z ¯ - 3i| là đường thẳng có phương trình
A. y = x + 1
B. y = -x + 1
C. y = -x - 1
D. y = x - 1
Trong mặt phẳng phức, tập hợp các điềm biểu diễn của sổ phức z thỏa mãn điểu kiện z + 1 = i - z đường thẳng △ có phương trình:
Cho i là đơn vị ảo. Tập hợp các điểm biểu diễn hình học số phức thỏa mãn z - + 1 = z + i - 2 là đường thẳng có phương trình
Cho i là đơn vị ảo. Tập hợp các điểm biểu diễn hình học số phức thỏa mãn |z-1+1| = |z+i-2| là đường thẳng có phương trình
Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 + i 8 ) z + i là một đường tròn. Bán kính r của đường tròn đó là