Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ng Thu Trà
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 17:31

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

Lê Nguyễn Phương Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
4 tháng 11 2021 lúc 8:43

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=105=3.35=5.21=7.15\)

+ Với \(\left(x-y\right)\left(x+y\right)=3.35\Rightarrow x-y=3;x+y=35\Rightarrow x=19;y=16\)

+ Với \(\left(x-y\right)\left(x+y\right)=5.21\Rightarrow x-y=5;x+y=21\Rightarrow x=13;y=8\)

+ Với \(\left(x-y\right)\left(x+y\right)=7.15\Rightarrow x-y=7;x+y=15\Rightarrow x=11;y=4\)

Khách vãng lai đã xóa
Ngô Thị Lan Anh
Xem chi tiết
Rhider
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 7:48

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

monsiaur kite
Xem chi tiết

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)

do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)

xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)

từ đó ta có bẳng sau

x+y+11264
x-y-1123
x13/2(loại)4(TM)7/2(loại)
y9/2(loại)1(TM)-1/2(loại)

vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1

Khách vãng lai đã xóa
SANS:))$$^
1 tháng 3 2022 lúc 7:28

Có:x^2=y^2+2y+13

=>x^2=(y^2+2y+1)+12

=>x^2=(y+1)^2+12

=>x^2-(y+1)^2=12

=>(x-y-1)(x+y+1)=12

vì x, y là các số nguyên dương

=>x-y-1<x+y+1

Xét các trường hợp

TH1:x-y-1=1 và x+y+1=12

=> x-y=2 và x+y=11

=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)

TH2: x-y-1=2 và x+y+1=6

=>x-y=3 và x+y=5

=>x=4 và y=3 (Thỏa mãn)

TH3:x-y-1=3 và x+y+1=4

=>x-y=4 và x+y=3(Loại vì x-y<x+y)

Vậy x=4, y=3

Khách vãng lai đã xóa

\(x^2=y^2+2y+13\)

\(x^2=y^2+2y+1+12\)

\(x^2=\left(y+1\right)^2+12\)

\(x^2-\left(y+1\right)^2=12\)

\(\left(x-y-1\right)\left(x+y+1\right)=12\)

Vì \(x,y\in N\Rightarrow x+y+1>x-y-1\)

Mà \(\left(x-y-1\right),\left(x+y+1\right)\inƯ\left(12\right)\)

Đến đây lập bảng là xog r bạn.

Khách vãng lai đã xóa
Lê Song Phương
Xem chi tiết
Nguyễn Nam Dương
24 tháng 1 2022 lúc 7:49

- Với \(x=1\Rightarrow y=1\)

- Với \(x>1\Rightarrow y>1\)

\(\Rightarrow3^x=2^y+1\)

Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)

Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm) 

\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)

\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)

\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)

\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)

Khách vãng lai đã xóa
nguyen minh quan
Xem chi tiết
Thuhuyen Le
Xem chi tiết
Quang Phạm
Xem chi tiết
Huỳnh Quang Sang
10 tháng 2 2019 lúc 19:23

\(x^2-y^2=2011\)

\(\Leftrightarrow(x-y)(x-y)=2011\)

Vì 2011 là số nguyên tố nên ước nguyên của 2011 chỉ có thể là \(\pm1;\pm2011\). Từ đó suy ra nghiệm \((x;y)\)là : \((1006;1005);(1006;-1005);(-1006;-1005);(-1006;1005)\).

P/S : Hông chắc :>

Quang Phạm
10 tháng 2 2019 lúc 19:25

mình cx ko biết đúng hay sai nên k đúng cho bạn :)))))

pham ba hoang
10 tháng 2 2019 lúc 19:30

Ta có x2 - y2 = 2011

   <=>(x-y)(x+y) = 2011

Ta có bảng sau

x-y-1   1   -20112011
x+y-20112011-1   1   

=>

x-10111011-10061006
y-10101010-1005-1005

|Kết hợp với x,y thuộc N*

=> các nghiệm của PT là (1011;1010)