Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Thành Trương
8 tháng 3 2021 lúc 14:15

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

 

Nguyễn Thành Trương
8 tháng 3 2021 lúc 14:17

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:

$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$

$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$

$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$

Khi đó BĐT đã cho trở thành:

$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$

Mặt khác ta có:

$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$

Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$

Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$

Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

Ngocmai
Xem chi tiết
Cris devil gamer
Xem chi tiết
Cậu Bé Ngu Ngơ
Xem chi tiết
Nguyễn Linh Chi
2 tháng 4 2020 lúc 20:52

Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)

Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)

\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)

=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)

=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)

\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)

\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)

\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)

Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z

=> \(4P\le4.\sqrt{9}=12\)

=> \(P\le3\)

Dấu "=" xảy ra <=> x = y = z = 1

Vậy max P = 3 đạt tại x = y = z = 1.

Khách vãng lai đã xóa
Easylove
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
๓เภђ ภوยץễภ ђảเ
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 10 2020 lúc 19:47

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

=> đpcm

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1

= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)

=> đpcm

Khách vãng lai đã xóa
Lê Đăng Khoa
Xem chi tiết
Kiệt Nguyễn
21 tháng 7 2020 lúc 20:07

Dễ lắm bạn! Biến đổi tương đương là ok á!

Khách vãng lai đã xóa
Phan Nghĩa
21 tháng 7 2020 lúc 20:16

\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(VT\ge3\left[\frac{\left(x+y+z\right)^2}{3}\right]=\frac{3\left(x+y+z\right)^2}{3}=VP\left(đpcm\right)\)(bất đẳng thức svacxo)

Khách vãng lai đã xóa
Kẻ Huỷ Diệt
Xem chi tiết
Nguyễn Duy Lương
3 tháng 8 2016 lúc 18:34

(x+y)(x+z) = x(x+y+z) +yz >= 2 ( áp dụng bdt cosi cho2 số dg) . Dấu "=" xảy ra <=> x(x+y+z) =yz ... bạn tự lm tiếp dựa vào đề bài nha.