Cho tam giác vuông tại A có A B = 1 c m , A C = 7 c m . Biết độ dài cạnh BC là một số nguyên. BC là:
A. 6cm
B. 8cm
C. 7cm
D. 9cm
Cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm a) tính độ dài cạnh ABC và chu vi tam giác ABC b) kẻ AK vuông góc BC biết AK = 4,8 . Tính BK và CK c) đường phân giác của góc B cắt AC tại D vẽ DH vuông góc vs BC (H thuộc BC). C/m m giác ABH = HBD D) c/m DA < DC
Cho tam giác ABC vuông tại A ,có góc B =60 độ và AB = 5cm .Tia phân giác của góc B cắt AC tại D . Kẻ DE vuông góc với BC tại E
a)c/m tam giác ABD=tam giác EBD
b)c/m tam giác ABE đều
c)tính độ dài cạnh BC
bài 7: cho tam giác ABC cân tại A có góc A =1200 vẽ AM vuông góc BC
a/ chứng minh: tam giác AMB= tam giác AMC
b/ vẽ MD vuông góc AB, ME vuông góc AC. chứng minh: MD=ME
c/ chứng minh: tam giác MDE đều
d/ vẽ m vuông goác BC tại C; m cắt tia BA tại F tính độ dài AF biết OF= 6 cm
(giúp mik nha)
Bài 2. Cho tam giác vuông tại A, có góc B=60 độ và cạnh AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
a) C/m tam giác ABD= tam giác EBD
b) C/m tam giác AEB đều
c) Tính độ dài BC.
Giúp giùm câu c,d
Cho tam giác ABC cân tại A. Kẻ am vuông BC tại M.
a) C/m tam giác ABM=ACM và MB=MC
b) Biết AB=20cm: BC=24cm. Tính độ dài đoạn thẳng MB và AM.
c) Kẻ MH vuông AB tại H và MK vuông AC tại K. C/m tam giác AHK cân tại A.
d) tính MH.
a)vì tam giác ABC cân tại A
=>AB=AC và góc ABC=góc ACB
xét tam giác ABM và tam giác ACM có
góc AMB=góc AMC(= 90 độ)
AB=AC
góc ABM=góc ACM
=>tam giác ABM = tam giác ACM (c/h-g/n)
=>MB=MC(2 cạnh tương ứng)
b)ta có BC=24
mà MB=MC
=>M là trung điểm của BC
=>BM=MC=24/2=12 cm
xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:
\(AB^2=AM^2+BM^2\)
\(AM^2=AB^2-BM^2\)
\(AM^2=20^2-12^2\)
\(AM^2=400-144\)
AM^2=256
=>AM=16 cm
c)vì tam giác ABM = tam giác ACM(cmt)
=>góc BAM=góc CAM(2 góc tương ứng)
xét tam giác HAM và tam giác KAM có
góc AHM = góc AKM(= 90 độ)
cạnh AM chung
góc BAM=góc CAM
=>tam giác HAM = tam giác KAM(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
=>tam giác AHK cân tại A
d)mình không biết làm phàn này nha
Cho tam giác ABC vuông ở A,đường cao AH.Từ H kẻ vuoog góc với AB tại E và HF vuông góc với AC tại F
a)C/m TỨ giác AEHF hcn
b)Tam giác ABC có thêm đk j để AEHF là hình vuông?
c)Cho biết AB=6CM;BC=10cm.Tish độ dài đường trug tuyến AM của tam giác ABC và độ dài đọa thẳng EF
a) Có: HE _|_ AB (gt); AF _|_ AB (gt) => HE // AF (1)
HF _|_ AC (gt); EA _|_ AC (gt) => HF // EA (2)
Từ (1) và (2) lại có: EAF = 90o (gt)
=> AEHF là hcn
b) Khi AEHF là hình vuông => HE = HF = AE = AF
t/g EHA = t/g FHA (c.c.c) => EHA = FHA (2 góc tương ứng)
Mà EHA + EHB = FHA + FHC = 90o
=> BHE = CHF
t/g BHE = t/g CHF (cạnh góc vuông và góc nhọn kề)
=> EBH = FCH (2 góc tương ứng)
Như vậy để AEHF là hình vuông thì tam giác ABC cân tại A
c) AM là đường trung tuyến của t/g ABC vuông tại A => AM = BC/2 = 10/2 = 5 (cm)
Theo định lí Pi ta go ta có:
AB2 + AC2 = BC2
=> 62 + AC2 = 102
=> AC2 = 102 - 62 = 64
=> AC = 8
Có: AB.AC:2 = BC.AH:2 ( cùng = dt tam giác ABC)
=> AB.AC = BC.AH
=> 6.8 = 10.AH
=> AH = 6.8:10 = 4,8 (cm)
AEHF là hcn => EF = AH = 4,8 (cm)
Cho tam giác ABC vuông tại A có góc B=60 độ.Trên cạnh Bc lấy điểm D sao cho BA=BD.Tia phân giác góc B cắt BC tại I
a)C/m tam giác BAD đều
b)C/m tam giác IBC cân
c)C/m D là trung điểm của BC
d) Cho tam giác ABC vuông tại A có BC=26 cm.Tính độ dàu AB và AC biết rằng AB:AC=5:2
(Bạn tự vẽ hình giùm)
a/ Ta có BA = BD (gt)
nên \(\Delta BAD\)cân tại B
=> \(\widehat{BAD}=\frac{180^o-\widehat{B}}{2}\)
=> \(\widehat{BAD}=\frac{180^o-60^o}{2}\)
=> \(\widehat{BAD}=\widehat{BDA}=60^o=\widehat{B}\)
=> \(\Delta BAD\)đều (đpcm)
b/ \(\Delta ABI\)và \(\Delta DBI\)có: AB = DB (gt)
\(\widehat{ABI}=\widehat{IBD}\)(BI là tia phân giác \(\widehat{B}\))
Cạnh BI chung
=> \(\Delta ABI\)= \(\Delta DBI\)(c. g. c) => \(\widehat{A}=\widehat{BDI}=90^o\)(hai cạnh tương ứng)
và AI = DI (hai cạnh tương ứng)
=> BI = IC (quan hệ giữa đường xiên và hình chiếu)
nên \(\Delta BIC\)cân tại I (đpcm)
c/ Ta có \(\Delta BIC\)cân tại I (cmt)
=> Đường cao ID cũng là đường trung tuyến của \(\Delta BIC\)
=> D là trung điểm BC (đpcm)
d/ Ta có \(\Delta ABC\)vuông tại A
=> BC2 = AB2 + AC2 (định lý Pythagore)
=> AB2 + AC2 = 262 = 676
và \(\frac{AB}{AC}=\frac{5}{2}\)=> \(\frac{AB}{5}=\frac{AC}{2}\)=> \(\frac{AB^2}{25}=\frac{AC^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{AB^2}{25}=\frac{AC^2}{4}=\frac{AB^2+AC^2}{25+4}=\frac{676}{29}\)
=> \(\hept{\begin{cases}\frac{AB}{5}=\frac{676}{29}\\\frac{AC}{2}=\frac{676}{29}\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{676}{29}.5\\AC=\frac{676}{29}.2\end{cases}}\)=> \(\hept{\begin{cases}AB=\frac{3380}{29}\left(cm\right)\\AC=\frac{1352}{29}\left(cm\right)\end{cases}}\)
Cho tam giác ABC vuông tại C biết CB = 8cm , AB = 10cm
a) Tính AC
b) Trên AB lấy điểm D sao cho AD = 6 cm . C/m : tam giác ACD cân
c) Tia phân giác góc A cắt CD và CB tại I và K . C/m : AI vuông góc với CD
d) So sánh độ dài KC và KB
Bài 7: a, Cho tam giác ABC vuông tại A có AB 3 AC 4 = và BC = 5. Tính độ dài AB, AC b, Tính độ dài cạnh huyền biết độ dài hai cạnh góc vuông là 6 và 7 c, Tính góc ở đỉnh của tam giác cân biết số đo góc ở đáy là 200 d, Tính số đo góc ở đáy tam giác cân biết số đo góc ở đỉnh là 600
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Bài 2: (2,5 điểm). Cho tam giác ABC vuông tại A, đường cao AH. Biết cạnh AH = 12 , CH = 6cm a) Tính độ dài cạnh BH,AB. b) Gọi M hình chiếu vuông góc kẻ từ H đến AB. Chứng minh: BM = (A * B ^ 3)/(B * C ^ 2) c) Hãy giải tam giác AHC vuông tại H. (Kết quả số đo góc làm tròn đến phút, độ dài làm tròn đến chữ số thập phân thứ hai).