Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2017 lúc 14:57

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 5:12

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2018 lúc 12:45

Chọn D

Ta có:  y ' = 3 x 2 - 4 x , y ' ' = 6 x - 4 ;

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y''(0) = -4 < 0; y''(4/3) = 4 > 0. Do đó hàm số có hai cực trị là x = 0 và x = 4/3

Các mệnh đề (1); (2) và (3) sai;mệnh đề (4) đúng.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2019 lúc 3:56

Nguyễn Huỳnh Đông Anh
Xem chi tiết
Võ Đăng Khoa
23 tháng 4 2016 lúc 14:37

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

Yến Hà
Xem chi tiết
vật lý
12 tháng 10 2021 lúc 20:44

??

Nguyễn Công Danh
12 tháng 10 2021 lúc 20:48

?

★゚°☆ Trung_Phan☆° ゚★
12 tháng 10 2021 lúc 20:53

Có bao nhiêu số nguyên m thuộc [-20;20] để đồ thị hàm số

y=mx4+(m2-9)x2+1  có ba điểm cực trị?

A. 20. B. 19. C. 18. D. 17.

y' = 4mx3 + 2(m2-9)x

hàm số có 3 điểm cực trị => m ≠ 0 và m.(m2-9)<0

=> x < -3 và 0 < x < 3

=> x ∈ {-20;-19;-18;...;-4;1;2} => 19 giá trị

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2017 lúc 5:01

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 1 2019 lúc 12:33

Chọn A

lê thị ngọc anh
Xem chi tiết
phạm văn tuấn
10 tháng 4 2018 lúc 20:28

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1

❊ Linh ♁ Cute ღ
10 tháng 4 2018 lúc 20:26

b. 
y = x^4 + 2(m + 1)x^2 + 1 
y' = 4x^3 + 4(m + 1)x 
y'= 0=> x=0 và x^2 + (m + 1)= 0 (*) 
để đồ thị hàm số có 3 điểm cực trị thì (*) có 2 nghiệm phân biệt 
=> m+1<0 
<=> m< -1 
ta có: 
y= [4x^3 + 4(m + 1)x]*x/4+ (m+1)x^2+ 1 
y= y'*x/4+ (m+1)x^2+ 1 
đường cong đi qua các điểm cực trị thỏa mãn y'= 0 
=> pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1 

Vậy để đồ thị hàm số có 3 điểm cực trị thì m< -1 
và pt phương trình đường cong đi qua các điểm cực trị đó là: 
y= (m+1)x^2+ 1