Cho hình chóp S.ABCD có đáy là hình chữ nhật, các mặt S A B và S A D vuông góc với đáy. Góc giữa (SCD) và mặt đáy bằng 60 ° , BC = a, Tính khoảng cách giữa AB và SC theo a.
A. a 3
B. a 3 4
C. a 3 2
D. a 2 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AD=a, A B = 3 a , ∆ S A B là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD.
Cho hình chóp S.ABCD có đáy là hình chữ nhật. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm A. Hình chóp có mấy mặt là tam giác vuông?
A. 2.
B. 3.
C. 4.
D. 1.
Hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, SA ⊥ (ABCD) tạo với mặt đáy một góc 45 0 . Mặt cầu ngoại tiếp hình chóp S. ABCD có bán kính bằng a 2 . Thể tích khối chóp S. ABCD bằng:
Chọn đáp án D
Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó OI ⊥ (ABCD)
⇒ IA = IB = IC = ID với ∆ S A C vuông tại A, IA = IS = IC. Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra IA = a 2 ⇒ SC = 2a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng (ABCD).
Suy ra ∆ S A C vuông cân
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a; AD=a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 0 . Khi đó thể tích khối chóp S.ABCD là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, tam giác SAD vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết AB = a, SA = 2SD, mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 60 ° . Thể tích của khối chóp S.ABCD bằng:
A. 15 a 3 2
B. 3 a 3 2
C. 5 a 3 2
D. 5 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, tam giác SAD vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết AB = a, SA = 2SD, mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 60 0 . Thể tích của khối chóp S.ABCD bằng:
A. 15 a 3 2
B. 3 a 3 2
C. 5 a 3 2
D. 5 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật cạnh a, S A ⊥ (A B C D) ,SC tạo với mặt đáy một góc 60 độ và (SAB ) một góc a với sin a = căn 3/ 4 . Tính chiều cao khối chóp.
Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được?
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB=2a, AD=a. Tam giác SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 ° . Khi đó thể tích khối chóp S.ABCD là
A. 2 a 3
B. 2 3 a 3
C. 3 3 a 3
D. 1 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S. ABCD bằng
A. 3 6 a 3
B. 3 3 a 3
C. 1 3 a 3
D. 2 3 a 3
Có đường cao của hình chóp đồng thời là đường cao tam giác đều
S A B ⇒ h = a 3 3 ⇒ V = a 3 2 . a . 2 a 3 = a 3 3 3
Chọn đáp án B.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S. ABCD bằng
Chọn D
Có đường cao của hình chóp đồng thời là đường cao tam giác đều