Cho hình chóp S.ABCD có đáy là hình thang cân với đáy A B = 2 a , A D = B C = C D = a , mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng 2 a 15 5 , tính theo a thể tích V của khối chóp




Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S. ABCD bằng

![]()

![]()
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 o . Thể tích khối chóp S.ABCD bằng:
A. a 3 3 12
B. a 3 3 9
C. a 3 5 24
D. a 3 5 6
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, tam giác SAD vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết AB = a, SA = 2SD, mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 60 ° . Thể tích của khối chóp S.ABCD bằng:
A. 15 a 3 2
B. 3 a 3 2
C. 5 a 3 2
D. 5 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng, góc giữa mặt phẳng (SCD) và mặt phẳng đáy bằng 60 0 . Tính thể tích V của khối chóp S.ABCD.




Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, S A = 2 a . Thể tích khối chóp S.ABCD theo a là:




Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật ,AB = 2a, A D = a 3 . Tam giác SBD vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SD và (ABCD) bằng 30 o . Tính thể tích khối chóp S.ABCD biết S B S D = 1 2 a ?

A. V S . A B C D = a 3 3 .
B. V S . A B C D = a 3
C. V S . A B C D = a 3 3 3 .
D. V S . A B C D = a 7 3 2 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC
A. a 10 10
B. a 10 5
C. 2 a 10 5
D. 2 a 5 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , A D = 2 a góc giữa hai mặt phẳng (SAC) và (ABCD) bằng 60°. Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.
A. 9 2 a 8
B. 62 a 16
C. 62 a 8
D. 31 a 32