Tìm m để phương trình có nghiệm duy nhất m^2x=mx+2m-1
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m -2 = 0
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
cho phương trình:
mx - 3 = 2x =2m
1) tìm m để phương trình vô nghiệm, phương trình có nghiệm
2) khi phương trình có nghiệm duy nhất :
a) tìm m nguyên để phương trình có nghiệm nguyên
b) tìm m để phương trình có nghiệm x>0
c) tìm m để phương trình có nghiệm x<0
Cho hệ phương trình x + my =2m hoặc mx + y = 1-m (m là tham số )
1.Tìm các giá trị của m để hệ phương trình :
a)Có nghiệm duy nhất. Tìm nghiệm duy nhất đó
b)Vô nghiệm
c)Vô số nghiệm
2.Trong trường hợp hệ phương trình có nghiệm duy nhất (x,y)
a)Hãy tìm giá trị m nguyên để x và y cùng nguyên
b)tìm hệ thức liên hệ giữa x và y không phụ thuộc m
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
Cho phương trình \(\dfrac{3x^2-1}{\sqrt{2x-1}}=\sqrt{2x-1}+mx\) . tìm m để phương trình có nghiệm duy nhất
Cho hệ phương trình: x + my = m + 1 mx + y = 2m,Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x > 2 và y > 1
Biết rằng hệ phương trình m x − y = 2 m + 1 2 x + m y = 1 − m có nghiệm duy nhất với mọi m. Tìm nghiệm duy nhất đó theo m.
A. x ; y = 2 m 2 + 1 m 2 + 2 ; m 2 − 3 m + 2 m 2 + 2
B. x ; y = − m 2 − 3 m − 2 m 2 + 2 ; 2 m 2 + 1 m 2 + 2
C. x ; y = 2 m 2 + 1 m 2 + 2 ; m 2 + 3 m + 2 m 2 + 2
D. x ; y = 2 m 2 + 1 m 2 + 2 ; − m 2 − 3 m − 2 m 2 + 2
Ta có
m x − y = 2 m + 1 2 x + m y = 1 − m ⇔ y = m x − 2 m − 1 2 x + m m x − 2 m − 1 = 1 − m
⇔ y = m x − 2 m − 1 2 x + m 2 x − 2 m 2 − m = 1 − m ⇔ m 2 + 2 x = 2 m 2 + 1 1 y = m x − 2 m − 1 2
Ta có m 2 + 2 > 0 ; ∀ m nên PT (1) có nghiệm duy nhất ∀ m
Hệ phương trình có nghiệm duy nhất ∀ m
Từ (1) ta có: x = 2 m 2 + 1 m 2 + 2 thay vào (2) ta có:
y = m . 2 m 2 + 1 m 2 + 2 − 2 m − 1 = − m 2 − 3 m − 2 m 2 + 2
Vậy x ; y = 2 m 2 + 1 m 2 + 2 ; − m 2 − 3 m − 2 m 2 + 2
Đáp án: D
Tìm m để phương trình \(x^3-3x^2-mx+2m+4=0\) có nghiệm duy nhất.
Cho phương trình mx mũ 2 + 2m -x = 4m + 2 . Tìm m để phương trình có nghiệm duy nhất thỏa mãn : x + 5 = m
\(mx^2+2m-x=4m+2\)
\(\Leftrightarrow mx^2-x-2m-2=0\)
\(\Leftrightarrow x\left(mx-1\right)-2m-2=0\)
Để phương trình có nghiệm duy nhất :
\(\Leftrightarrow mx-1\ne0\)
\(\Leftrightarrow m\ne\frac{1}{x}\)
Ta có : \(x+5=m\Leftrightarrow x=m-5\)
Thay vào trên ta có :
\(m\ne\frac{1}{m-5}\Leftrightarrow m-\frac{1}{m-5}\ne0\)
\(\Leftrightarrow m^2-5m-1\ne0\)
\(\Leftrightarrow\hept{\begin{cases}m\ne\frac{5-\sqrt{29}}{2}\\m\ne\frac{5+\sqrt{29}}{2}\end{cases}}\)
Chúc bạn học tốt !!!