Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiền Trang
Xem chi tiết
Trần Trung Nguyên
14 tháng 12 2018 lúc 13:05

Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+bc^2+ac^2=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(1\right)\)

Ta lại có \(abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc+\left(ab+ac+b^2+bc\right)\left(c+a\right)=abc+abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2+abc=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(2\right)\)

Từ (1),(2)\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nguyễn đức mạnh
Xem chi tiết
Nguyễn Minh Hiền Trang
Xem chi tiết
Nguyễn Tuấn
16 tháng 3 2016 lúc 21:35

vì với mọi số a,b,c thì ta cũng có biểu thức đó luôn đúng nên thay giá trị vô đúng là dc

tran van
Xem chi tiết
vũ tiền châu
15 tháng 2 2018 lúc 12:42

cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!

^_^

Mostost Romas
Xem chi tiết
Nguyễn Long Thành
5 tháng 8 2023 lúc 10:44

a2-2a+1+4b2-12b+9+3c2-6c+3+1>0

 

 (luôn đúng)

 BĐT ban đầu đúng

pham thuy trang
Xem chi tiết
Nhok Silver Bullet
14 tháng 8 2015 lúc 7:28

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

Hoàng Anh Tuấn
14 tháng 8 2015 lúc 6:44

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

Hoàng Anh Tuấn
14 tháng 8 2015 lúc 6:48

công thanh sai rồi số nguyên chứ đâu phải số tự nhiên

Nguyễn Hoàng Dương
Xem chi tiết
Giang Nguyễn Hương
Xem chi tiết
pham trung thanh
12 tháng 11 2017 lúc 9:40

Chứng minh bđt phụ :

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)với \(\forall x;y;z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(*)

Áp dụng bđt (*), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)

Lại có :\(a^2b^2+b^2c^2+c^2a^2\ge abbc+bcca+caab=abc\left(a+b+c\right)\)(2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Dấu = xảy ra khi a=b=c     

Vậy \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Phần dấu = xảy ra không biết bạn có cần không nhưng thầy mình bảo phải ghi vào mới được điểm tối đa

๖ۣۜBá ๖ۣۜVươηɠ
Xem chi tiết
Vũ Việt Hà
28 tháng 7 2018 lúc 15:02

Ta có: a/(a+b) > a/(a+b+c) 

b/(b+c) > b/(b+c+a) 

c/(c+a) > c/(c+a+b)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1

Lại có: a/(a+b) < (a+b)/(a+b+c) 

b/(b+c) < (b+c)/(b+c+a) 

c/(c+a) < (c+a)/(c+a+b)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2 

Vậy .....

Hoàng Khánh Ngọc
17 tháng 5 2020 lúc 13:24

=))hihihi

Khách vãng lai đã xóa
Phạm Thị Quỳnh Anh
17 tháng 5 2020 lúc 13:55

day ko phai lop 4ok

Khách vãng lai đã xóa