Trong không gian cho ba vectơ a , b và c đều khác vectơ 0 . Khi nào ba véc tơ đó đồng phẳng?
Trong không gian cho 3 vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) đều khác vectơ - không. Khi nào ba vectơ đó đồng phẳng ?
Thỏa mãn :
- Giá của 3 vector đều song song với mặt phẳng (P) nên chúng đồng phẳng
- Khi ba vectơ có giá của chúng cùng song song với một mặt phẳng
Trong không gian (Oxyz), cho mặt phẳng α 2x-y+3z+1=0. Véc tơ nào sau đây là vectơ pháp tuyến của mặt phẳng α
A. (-4;2;-6)
B. (2;1;-3)
C. (-2;1;3)
D. (2;1;3)
Trong không gian (Oxyz), cho mặt phẳng (P) x-2y-z+1=0. Véc tơ nào dưới đây là 1 vectơ pháp tuyến của (P)
A. (1;2;-1)
B. (1;-2;-1)
C. (1;0;1)
D. (1;-2;1)
Trong không gian, cho ba vectơ u → , v → , w → không đồng phẳng. Tìm x để ba vectơ a → = u → + 2 v → + 3 w → ; b → = - u → + v → + w → ; c → = x u → + v → - 2 w → đồng phẳng.
A. x = 10
B. x = -10
C. x = 5
D. x = -5
Rõ ràng a → và b → không cùng phương.
Ba vectơ a → , b → , c → đồng phẳng ⇔ ∃ cặp số ( m,n ) sao cho c → = m a → + n b →
Vì u → , v → , w → không đồng phẳng nên
x - m + n = 0 1 - 2 m - n = 0 - 2 - 3 m - n = 0 ⇔ x = - 10
Đáp án B
Trong không gian Oxyz, cho ba vectơ a → = 4 ; 3 ; − 2 , b → = 6 ; 5 ; 1 , c → = x ; 2 x ; 3 x + 2 . Để ba vectơ a → , b → , c → đồng phẳng thì giá trị của x là:
A. − 4 13
B. 13 4
C. 4 13
D. − 13 4
Đáp án C
Em có: a → , b → = 13 ; − 16 ; 2
Ba vectơ a → , b → , c → đồng phẳng thì a → , b → . c → = 0
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; -5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)
A. n → = ( 1 ; 1 2 ; 1 5 )
B. n → = ( 1 ; - 1 2 ; - 1 5 )
C. n → = ( 1 ; - 1 2 ; 1 5 )
D. n → = ( 1 ; 1 2 ; - 1 5 )
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC) ?
A. n 1 → = ( 1 ; 1 2 ; 1 5 )
B. n 2 → = ( 1 ; - 1 2 ; - 1 5 )
C. n 3 → = ( 1 ; - 1 2 ; 1 5 )
D. n 4 → = ( 1 ; 1 2 ; - 1 5 )
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)?
Đáp án B.
Cách 1: Ta có
Cách 2:
Theo công thức phương trình đoạn chắn ta có phương trình
Suy ra phương trình pháp tuyến của (ABC) là
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A( 1;0;0), B(0;-2;0), C(0;0;-5). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (ABC)?
A. n 1 ⇀ = 1 ; 1 2 ; 1 5
B. n 2 ⇀ = 1 ; - 1 2 ; - 1 5
C. n 3 ⇀ = 1 ; - 1 2 ; 1 5
D. n 4 ⇀ = 1 ; 1 2 ; - 1 5