Cho phân thức P = x 2 + y 2 2 x + 3 y + 4 Với giá trị nào của x và y thì P = 0?
Cho phân thức \(\frac{x-2}{x+2}\) với \(x\)≠\(-2\). Biến đổi phân thức đã cho thành một phân thức bằng nó và có tử thức là đa thức \(A=x^2-4\)
\(\dfrac{x-2}{x+2}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2^2}{\left(x+2\right)^2}\)
\(=\dfrac{x^2-4}{x^2+4x+4}\)
Vậy đã biến đổi phân thức thành một phân thức bằng nó và có tử bằng với đa thức: \(A=x^2-4\)
Cho 2 phân thức \(\frac{x^3-x^2-x+1}{x^4-2x^2+1},\frac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}\)
Ta đã biết có vô số cặp phân thức có cùng mẫu thức và bằng cặp phân thức đã cho. hãy tìm cặp phân thức như thế với mẫu thức là đa thức có bậc thấp nhất
\(\dfrac{x^3-x^2-x+1}{x^4-2x^2+1}=\dfrac{x^2\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{1}{x+1}\)
\(\dfrac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}=\dfrac{5x\left(x+1\right)^2}{\left(x+1\right)^3}=\dfrac{5x}{x+1}\)
Cho phân thức p=3x^2+6x+3/x+1 a, Tìm điều kiện của x để giá trị của phân thức p xác định. b, Rút gọn phân thức p c,Tính giá trị của phân thức tại x=2
\(P=\dfrac{3x^2+6x+3}{x+1}\)
\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)
\(c,x=1\Rightarrow P=3.1+3=6\)
cho phân thức p=3x^2+3x/(x+1)(x^2-x) tìm giá trị của x để phân thức x =1
Cho hai phân thức \(\frac{x^3-x^2-x+1}{x^4-2x^2+1}\),\(\frac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}\) . Theo bài tập 8 có vô số cặp phân thức có cùng mẫu thức và bằng cặp phân thức đã cho. Hãy tìm cặp phân thức như thế với mẫu thức là đa thức có bậc thấp nhất
EM MỚI LỚP 3 LÊN EM KO BIẾT GÌ HẾT
CHẮC CHỊ HOẶC ANH NÊN TRA GOOGLE
Tham khảo lấy nguồn từ Vietjack.com
Cho phân thức x2-1/x3-5x2+4x+10
a.Tìm x để GT của phân thức =0
b.rút gọn rồi tính GT của phân thức với x=2
Cho đa thức B=2x^3+3x^2-29x+30 và hai phân thức
\(\frac{x}{2x^2+7x-15}\); \(\frac{x+2}{x^2+3x-10}\)
a) chia đa thức B lần lượt cho các mẫu thức của hai phân thức đã cho.
b) Quy đồng mẫu thức của hai phân thức đã cho
1. Cho phân thức 2x^2 - 4x + 8/x^3+8
a) Với điều kiện nào của x thì giá trị của phân thức được xác định.
b) Hãy rút gọn phân thức
c) Tính giá trị của phân thức tại x=2
d) Tìm giá trị của x để giá trị của phân thức bằng 2
a) \(\frac{2x^2-4x+8}{x^3+8}\Rightarrow\) ĐKXĐ: \(x^3+8\ne0 \Leftrightarrow x^3\ne-8 \Leftrightarrow x\ne-2 \)
b) \(\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
c) \(\frac{2}{x+2}\Rightarrow f\left(2\right)=\frac{2}{2+2}=\frac{1}{2}\)
d) \(\frac{2}{x+2}=2\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)
Cho phân thức ( x2 - 4x + 4 ) / ( x2 - 4 )
a, Tìm ĐKXĐ của phân thức
b, Rút gọn phân thức
c, Tính giá trị của phân thức tại |x| = 3
d, Tìm giá trị của x để giá trị của phân thức nhỏ hơn 2
a, ĐKXĐ \(x^2-4\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}X\ne2\\X\ne-2\end{cases}}\)
=> \(X\ne\pm2\)
Vậy \(X\ne\pm2\)
b, Rút gọn
A= \(\frac{x^2-4x+4}{x^2-4}\) ĐKXĐ: \(X\ne\pm2\)
<=> A= \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
<=> A= \(\frac{x-2}{x+2}\)
Vậy A= \(\frac{x-2}{x+2}\) với \(X\ne\pm2\)
Hết r............
Thông cảm
a, \(ĐKXĐ:x^2-4\ne0\Rightarrow x\ne\pm2\)
b,Đặt \(A=\frac{x^2-4x+4}{x^2-4}\)
\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
c, \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (thỏa mãn ĐKXĐ)
Với x = 3 thì \(A=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = -3 thì \(A=\frac{-3-2}{-3+2}=5\)
d, \(A< 2\Rightarrow\frac{x-2}{x+2}< 2\Rightarrow x-2< 2x+4\Rightarrow-2-4< 2x-x\Rightarrow x>-6\)
cho phân thức A=(x^2-6x+9)/(x^2-9)
a. tìm điều kiện của x để giá trị của phân thức A được xác định.
b. rút gọn phân thức đã cho.
c. tính giá trị của x để giá trị của phân thức A bằng 7.
Answer:
a. \(ĐKXĐ:x^2-9\ne0\Rightarrow x^2\ne9\Rightarrow x\ne\pm3\)
b. \(A=\frac{x^2-6x+9}{x^2-9}=\frac{\left(x-3\right)^2}{\left(x-3\right).\left(x+3\right)}=\frac{x-3}{x+3}\)
c. \(A=7\)
\(\Rightarrow\frac{x-3}{x+3}=7\)
\(\Rightarrow x-3=7.\left(x+3\right)\)
\(\Rightarrow x-3=7x+21\)
\(\Rightarrow x-3-7x-21=0\)
\(\Rightarrow-6x-24=0\)
\(\Rightarrow x=-4\)