So Sánh Các Số
5^217 và 119^72
2^1050 và 5^450
1000^10 +1990^9 và 1991^10
so sánh#giải ra giúp mik#mik cảm ơn#
1990\(^{10}\) + 1990\(^9\) và 1991\(^{10}\)
10\(^{10}\) và 48.50\(^5\)
11\(^{1979}\) và 37\(^{1320}\)
Lời giải:
$1990^{10}+1990^9=1990^9(1990+1)=1991.1990^9< 1991.1991^9=1991^{10}$
-----------------------
$10^{10}=(10^2)^5=100^5=(2.50)^5=2^5.50^5=32.50^5< 48.50^5$
------------------------
$11^{1979}< 11^{1980}=(11^3)^{660}=1331^{660}$
$37^{1320}=(37^2)^{660}=1369^{660}> 1331^{660}$
$\Rightarrow 11^{1979}< 37^{1320}$
so sánh :
a. 202^303 và 303^202
b. 99^20 và 9999^10
c. 11^1979 và 37^1320
d. 10^10 và 48.50^5
1990^10 + 1990^9 và 1991^10
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
So sánh ; 1990^10+1990^9 và 1991^10
Ta có :
1990^10 + 1990^9 = 1990.1990^9 + 1990^9 = 1991^9 < 1991^10
=> (1990^10 + 1990^9) < 1991^10
So sánh các phân số sau:
a,202^303 và 303^202
b,99^20 và 9999^202
c,1990^10 + 1990^9 và 1991^10
d,10^10 và 48.50^5
Đáp án là :
a) <
b, <
c, chưa biết
d, <
đúng thì ủng hộ tớ nha
1. so sánh a,10 mũ 10 và 48. 50 mũ 5 b,1990 mũ 10 + 1990 mũ 9 và 1991 mũ 10 c,107 mũ 50 và 73 mũ 75 d,2 mũ 91 và 5 mũ 35 e, A = 72 mũ 45 - 72 mũ 44 và 72 mũ 44 - 72 mũ 43 2 tìm x a, x-2023 /4 = 1 phần x - 2023 b, (2x + 1) mũ 4= (2x + 1) mũ 6 c,(3x-1) mũ 10 = (3x - 1) mũ 20 d, 2 mũ x+1 . 3y = 12x
Bài 1:
a: \(10^{10}=\left(2\cdot5\right)^{10}=2^{10}\cdot5^{10}=2^9\cdot5^{10}\cdot2\)
\(48\cdot50^5=2^4\cdot3\cdot\left(2\cdot5^2\right)^5=2^4\cdot3\cdot2^5\cdot5^{10}=2^9\cdot5^{10}\cdot3\)
mà 2<3
nên \(10^{10}<48\cdot50^5\)
b: \(1990^{10}+1990^9=1990^9\left(1990+1\right)=1990^9\cdot1991\)
\(1991^{10}=1991^9\cdot1991\)
mà 1990<1991
nên \(1990^{10}+1990^9<1991^{10}\)
c: \(107^{50}<108^{50}=\left(2^2\cdot3^3\right)^{50}=2^{100}\cdot3^{150}\)
\(73^{75}>72^{75}=\left(2^3\cdot3^2\right)^{75}=2^{225}\cdot3^{150}\)
mà \(2^{225}\cdot3^{150}>2^{100}\cdot3^{150}=108^{50}>107^{50}\)
nên \(73^{75}>107^{50}\)
d: \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)
e: \(A=72^{45}-72^{44}=72^{44}\left(72-1\right)=72^{44}\cdot71\)
\(B=72^{44}-72^{43}=72^{43}\left(72-1\right)=72^{43}\cdot71\)
mà 44>43
nên A>B
Bài 2:
a:
ĐKXĐ: x<>2023
\(\frac{x-2023}{4}=\frac{1}{x-2023}\)
=>\(\left(x-2023\right)\left(x-2023\right)=4\cdot1\)
=>\(\left(x-2023\right)^2=4\)
=>\(\left[\begin{array}{l}x-2023=2\\ x-2023=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2+2023=2025\left(nhận\right)\\ x=-2+2023=2021\left(nhận\right)\end{array}\right.\)
b: \(\left(2x+1\right)^4=\left(2x+1\right)^6\)
=>\(\left(2x+1\right)^6-\left(2x+1\right)^4=0\)
=>\(\left(2x+1\right)^4\cdot\left\lbrack\left(2x+1\right)^2-1\right\rbrack=0\)
=>\(\left(2x+1\right)^4\cdot\left(2x+1-1\right)\left(2x+1+1\right)=0\)
=>\(2x\left(2x+1\right)^4\cdot\left(2x+2\right)=0\)
=>\(\left[\begin{array}{l}2x=0\\ 2x+1=0\\ 2x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac12\\ x=-1\end{array}\right.\)
c: \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)
=>\(\left(3x-1\right)^{20}-\left(3x-1\right)^{10}=0\)
=>\(\left(3x-1\right)^{10}\cdot\left\lbrack\left(3x-1\right)^{10}-1\right\rbrack=0\)
=>\(\left[\begin{array}{l}\left(3x-1\right)^{10}=0\\ \left(3x-1\right)^{10}-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}3x-1=0\\ \left(3x-1\right)^{10}=1\end{array}\right.\)
=>\(\left[\begin{array}{l}3x-1=0\\ 3x-1=1\\ 3x-1=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac13\\ x=\frac23\\ x=0\end{array}\right.\)
d: Sửa đề \(2^{x+1}\cdot3^{y}=12^{x}\)
=>\(2^{x+1}\cdot3^{y}=\left(2^2\cdot3\right)^{x}=2^{2x}\cdot3^{x}\)
=>\(\begin{cases}2x=x+1\\ y=x\end{cases}\Rightarrow\begin{cases}x=1\\ y=x=1\end{cases}\)
So sánh : 999^10+1990^9 và 1991^10
so sánh 199010 + 19909và 199110
Cho A= 1990^10+ 1990^9, B= 1991^10. So sánh A và B
Lời giải:
$A=1990^{10}+1990^9=1990^9(1990+1)=1990^9.1991< 1991^9.1991=1991^{10}$
Hay $A< B$
so sánh: 199010+19909 và 199110