Bài 1:
a: \(10^{10}=\left(2\cdot5\right)^{10}=2^{10}\cdot5^{10}=2^9\cdot5^{10}\cdot2\)
\(48\cdot50^5=2^4\cdot3\cdot\left(2\cdot5^2\right)^5=2^4\cdot3\cdot2^5\cdot5^{10}=2^9\cdot5^{10}\cdot3\)
mà 2<3
nên \(10^{10}<48\cdot50^5\)
b: \(1990^{10}+1990^9=1990^9\left(1990+1\right)=1990^9\cdot1991\)
\(1991^{10}=1991^9\cdot1991\)
mà 1990<1991
nên \(1990^{10}+1990^9<1991^{10}\)
c: \(107^{50}<108^{50}=\left(2^2\cdot3^3\right)^{50}=2^{100}\cdot3^{150}\)
\(73^{75}>72^{75}=\left(2^3\cdot3^2\right)^{75}=2^{225}\cdot3^{150}\)
mà \(2^{225}\cdot3^{150}>2^{100}\cdot3^{150}=108^{50}>107^{50}\)
nên \(73^{75}>107^{50}\)
d: \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)
e: \(A=72^{45}-72^{44}=72^{44}\left(72-1\right)=72^{44}\cdot71\)
\(B=72^{44}-72^{43}=72^{43}\left(72-1\right)=72^{43}\cdot71\)
mà 44>43
nên A>B
Bài 2:
a:
ĐKXĐ: x<>2023
\(\frac{x-2023}{4}=\frac{1}{x-2023}\)
=>\(\left(x-2023\right)\left(x-2023\right)=4\cdot1\)
=>\(\left(x-2023\right)^2=4\)
=>\(\left[\begin{array}{l}x-2023=2\\ x-2023=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2+2023=2025\left(nhận\right)\\ x=-2+2023=2021\left(nhận\right)\end{array}\right.\)
b: \(\left(2x+1\right)^4=\left(2x+1\right)^6\)
=>\(\left(2x+1\right)^6-\left(2x+1\right)^4=0\)
=>\(\left(2x+1\right)^4\cdot\left\lbrack\left(2x+1\right)^2-1\right\rbrack=0\)
=>\(\left(2x+1\right)^4\cdot\left(2x+1-1\right)\left(2x+1+1\right)=0\)
=>\(2x\left(2x+1\right)^4\cdot\left(2x+2\right)=0\)
=>\(\left[\begin{array}{l}2x=0\\ 2x+1=0\\ 2x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac12\\ x=-1\end{array}\right.\)
c: \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)
=>\(\left(3x-1\right)^{20}-\left(3x-1\right)^{10}=0\)
=>\(\left(3x-1\right)^{10}\cdot\left\lbrack\left(3x-1\right)^{10}-1\right\rbrack=0\)
=>\(\left[\begin{array}{l}\left(3x-1\right)^{10}=0\\ \left(3x-1\right)^{10}-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}3x-1=0\\ \left(3x-1\right)^{10}=1\end{array}\right.\)
=>\(\left[\begin{array}{l}3x-1=0\\ 3x-1=1\\ 3x-1=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac13\\ x=\frac23\\ x=0\end{array}\right.\)
d: Sửa đề \(2^{x+1}\cdot3^{y}=12^{x}\)
=>\(2^{x+1}\cdot3^{y}=\left(2^2\cdot3\right)^{x}=2^{2x}\cdot3^{x}\)
=>\(\begin{cases}2x=x+1\\ y=x\end{cases}\Rightarrow\begin{cases}x=1\\ y=x=1\end{cases}\)