Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Thảo
19 tháng 4 2017 lúc 20:43

a) Từ hình vẽ ta có: LP ⊥ MN; MQ ⊥ LN

ΔMNL có S là giao điểm của hai đường cao LP và MQ nên S chính là trực tâm của tam giác (định lí ba đường cao).

=> NS cũng là đường cao trong tam giác hay NS ⊥ LM (đpcm).

b) ΔNMQ vuông tại Q có góc LNP = 50o nên góc QMN = 40o

ΔMPS vuông tại P có góc QMP = 40o nên góc MSP = 50o

Vì hai góc MSP và PSQ là hai góc kề bù nên suy ra:

góc PSQ = 180o - 50o = 130o.

Thien Tu Borum
19 tháng 4 2017 lúc 16:07

Hướng dẫn:

a) Trong ∆NML có :

LP ⊥ MN nên LP là đường cao

MQ ⊥ NL nên MQ là đường cao

mà PL ∩ MQ = {S}

suy ra S là trực tâm của tam giác nên đường thằng SN chứa đường cao từ N hay

SN ⊥ ML

b) ∆NMQ vuông tại Q có ˆLNPLNP^ =500 nên ˆQMNQMN^ =400

∆MPS vuông tại Q có ˆQMPQMP^ =400 nên ˆMSPMSP^ =500

Suy ra ˆPSQPSQ^ =1300(kề bù)

Trần Nguyễn Bảo Quyên
19 tháng 4 2017 lúc 16:08

a) Trong ∆NML có :

LP ⊥ MN nên LP là đường cao

MQ ⊥ NL nên MQ là đường cao

mà PL ∩ MQ = {S}

suy ra S là trực tâm của tam giác nên đường thằng SN chứa đường cao từ N hay SN ⊥ ML

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2018 lúc 3:45

+ Ta có : trong tam giác vuông, hai góc nhọn phụ nhau nên :

ΔNMQ vuông tại Q có:

Giải bài 59 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

Sách Giáo Khoa
Xem chi tiết
Trương Hồng Hạnh
2 tháng 6 2017 lúc 21:18

Ta có: góc B + góc D = 1200 + 600 = 1800

Mà hai góc này TCP

=> AB // CD

Xét tam giác ABO và tam giác CDO có:

AB = CD (GT)

ABC = BCD (AB // CD)

BAD = ADC (AB // CD)

=> tam giác ABO = tam giác CDO

=> AO = OD

=> O là trung điểm AD

Ta có: tam giác ABO = tam giác CDO

=> BO = OC

=> O là trung điểm BC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 12 2018 lúc 16:35

106 - 57 = (2.5)6 - 56.5 = 26.56 - 56.5=56.(26 - 5)=56.59⋮ 59

Thy Nguyễn
Xem chi tiết
subjects
28 tháng 12 2022 lúc 12:17

\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)

Trần Phạm Hải Nam
Xem chi tiết
Ha My Le Vi
Xem chi tiết
Kudo Shinichi
22 tháng 12 2021 lúc 18:45

\(A=7+7^2+7^3+...+7^{119}+7^{120}\)

\(\Rightarrow7A=7^2+7^3+7^4+...+7^{120}+7^{121}\)

\(\Rightarrow7A-A=\left(7^2+7^3+...+7^{120}+7^{121}\right)-\left(7+7^2+...+7^{119}+7^{120}\right)\)

\(\Rightarrow6A=7^2+7^3+...+7^{120}+7^{121}-7-7^2-...-7^{119}-7^{120}\)

\(\Rightarrow6A=7^{121}-7\)

\(\Rightarrow A=\dfrac{7^{121}-7}{6}\)

Man Silk
Xem chi tiết
Thuc Tran
14 tháng 12 2017 lúc 11:33

7^20 + 49^11 + 343^7 = ( 7^1 )^20 + ( 7^2 )^11 + ( 7^3 )^7 

=7^20 + 7^21 + 7^22 = 7^20 ( 1 + 7 + 7^2 ) = 720.57 Vì 57 chia hết cho 57 nên 7^20 .57 chia hết cho 57 => 7^20 + 49^11 + 343^7 chia hết cho 57 

Nguyễn Đức Minh
Xem chi tiết