Cho tam giác ABC có AB < AC, đường cao AH. Chứng minh rằng: HB < HC, ∠(HAB) < ∠ (HAC)(xét hai trường hợp: B nhọn và B tù)
Cho tam giác ABC có AB < AC, đường cao AH. Chứng minh rằng: HB < HC, ∠(HAB) < ∠ (HAC)(xét hai trường hợp: B nhọn và B tù).
Ta có: AB < AC (gt)
Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)
* Trường hợp Bnhọn (hình a)
Trong Δ ABC, ta có: AB < AC
Suy ra: ∠B > ∠C(đối diện với cạnh lớn hơn là góc lớn hơn)
Trong Δ AHB, ta có ∠(AHB) = 90o
Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)
Trong Δ AHC, ta có ∠(AHC) = 90o
Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)
Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC)
* Trường hợp Btù (hình b)
Vì điểm B nằm giữa H và C nên ∠(HAC) = ∠(HAB) + ∠(BAC)
Vậy ∠(HAB) < ∠(HAC).Ta có: AB < AC (gt)
Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)
Cho tam giác ABC có AB < AC, đường cao AH.
Chứng minh rằng :
\(HB< HC,\widehat{HAB}< \widehat{HAC}\)
(Xét hai trường hợp : \(\widehat{B}\) nhọn và \(\widehat{B}\) tù )
Ta có: AB < AC (gt)
Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)
* Trường hợp góc B nhọn
Trong Δ ABC, ta có: AB < AC
Suy ra: góc B > góc C(đối diện với cạnh lớn hơn là góc lớn hơn)
Trong Δ AHB, ta có góc AHB = \(90^0\)
Suy ra: góc B + góc HAB = \(90^0\) (tính chất tam giác vuông) (1)
Trong Δ AHC, ta có góc AHC = \(90^0\)
Suy ra: góc C + góc HAC = \(90^0\) (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: góc B + góc HAB) = góc C + góc HAC
Mà góc B > góc C nên góc HAB < góc HAC
* Trường hợp Btù
Vì điểm B nằm giữa H và C nên góc HAC = góc HAB + góc BAC
Vậy góc HAB < góc HAC.
cho tam giác ABC có AB<AC kẻ AH vuông góc với BC tại H. CM HB<HC góc HAB<góc HAC xét 2 trường hợp góc B là góc tù và góc nhọn
Cho tam giác ABC có ∠B , ∠C là các góc nhọn, AC > AB. Kẻ đường cao AH. Chứng minh rằng ∠(HAB) < ∠(HAC) .
Trong ΔABC ta có AC > AB (gt)
Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)
Trong ΔAHB có ∠(AHB) = 90o
Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)
Trong ΔAHC có ∠(AHC) = 90o
Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)
Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)
Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .
Cho tam giác ABC có AB < AC , đường cao AH .Chứng minh rằng : HB < HC , góc HAB < góc HAC ( Xét hai trường hợp : góc B nhọn và góc B tù ).
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Lytranvietha 0_0 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC có AB < AC, phân giác AD,trung tuyến AM,đường cao AH.
a) So sánh độ dài của HB và HC
b) Chứng minh rằng HAC > \(\dfrac{A}{2}\)
c) Nhận xét gì về vị trí của các tia AH,AD,AM
a) Xét ΔABC có AB<AC(gt)
mà HB là hình chiếu của AB trên BC(gt)
và HC là hình chiếu của AC trên BC(gt)
nên HB<HC
c) tia AD nằm giữa hai tia AH và AM
cho tam giác ABC nhọn có AB>AC. Kẻ đường cao AH. Chứng minh rằng
a, HB>HC
b, BAH>CAH
a: Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: ΔABC có AB>AC
nên góc C>góc B
=>90 độ-góc C<90 độ-góc B
=>góc HAC<góc HAB
Cho tam giác ABC có ba góc nhọn, kẻ AH vuông góc với cạnh B
C.Biết HB < HC, chứng minh rằng: góc HAB < góc HAC.
Ta có: \(HB< HC\Rightarrow AB< AC\)(đường xiên ,hình chiếu)
Trong tam giác ABC có ; \(AB< AC\Rightarrow\widehat{C}< \widehat{B}\)(góc và cạnh đối diện trong tam giác )
\(\Rightarrow90^0-\widehat{C}>90^0-\widehat{B}\)
Do \(AH\perp BC\Rightarrow\widehat{HAC}=90^0-\widehat{B};\widehat{HAC}=90^0-C\)
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
Trên HC lấy điểm E sao cho HB=HE.
Suy ra E nằm giữa H và C vì HE<HC.
Xét tam giác ABE có AE đồng thời là đường cao,đường trung tuyến nên tam giác ABE cân tại A.
\(\Rightarrow AB=AE,\widehat{ABE}=\widehat{AEB}\)
Do ^AEH là góc ngoài của tam giác AEC nên \(\widehat{AEH}>\widehat{ACB}\)
Suy ra \(\widehat{ABE}>\widehat{ACB}\)hay \(AB< AC\)(quan hệ giữa góc và cạnh đối diện)
Đến đây mới áp dụng như bạn được nhé.Đề đã cho AB<AC đâu!
Cho tam giác ABC nhọn, AB<AC. AH là đường cao.
a) Chứng minh góc BAC < góc HAC
b) Trên HC lấy D sao cho HB=HD, CHứng minh tam giác BAD cân.