Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
x 2 + x - 2 + 2 = 0 ; x 1 = - 2
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
x 2 - 2 m x + m - 1 = 0 ; x 1 = 2
x2 - 2mx + m - 1 = 0 (1)
Vì x1 = 2 là một nghiệm của pt (1) nên:
22 - 2m.2 + m - 1 = 0
⇔ 4- 4 m+ m – 1 = 0
⇔ 3- 3m = 0
⇔ m = 1
Khi m = 1 ta có: x1.x2 = m - 1 (hệ thức Vi-ét)
⇔ 2.x2 = 0 (vì x1 = 2 và m = 1)
⇔ x2 = 0
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
a ) 12 x 2 − 8 x + 1 = 0 ; x 1 = 1 2 b ) 2 x 2 − 7 x − 39 = 0 ; x 1 = − 3 c ) x 2 + x − 2 + 2 = 0 ; x 1 = − 2 d ) x 2 − 2 m x + m − 1 = 0 ; x 1 = 2
Theo định lý Vi-et ta có: phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2 thì:
Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.
Ở bài giải dưới đây ta sẽ sử dụng điều kiện:
(Các bạn có thể làm cách 2 sử dụng điều kiện ).
d) x 2 - 2 m x + m - 1 = 0 ( 1 )
Vì x 1 = 2 là một nghiệm của pt (1) nên:
2 2 - 2 m . 2 + m - 1 = 0
⇔ 4- 4 m+ m – 1 = 0
⇔ 3- 3m = 0
⇔ m = 1
Khi m = 1 ta có: x 1 . x 2 = m - 1 (hệ thức Vi-ét)
⇔ 2 . x 2 = 0 ( v ì x 1 = 2 và m = 1)
⇔ x 2 = 0
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
12 x 2 - 8 x + 1 = 0 ; x 1 = 1 2
Theo định lý Vi-et ta có: phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2 thì:
Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.
Ở bài giải dưới đây ta sẽ sử dụng điều kiện:
(Các bạn có thể làm cách 2 sử dụng điều kiện ).
Ta có: x 1 . x 2 = c a
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
2 x 2 - 7 x - 39 = 0 ; x 1 = - 3
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
a) \(12x^2-8x+1=0;x_1=\dfrac{1}{2};\)
b) \(2x^2-7x-39=0;x_1=-3;\)
c) \(x^2+x-2+\sqrt{2}=0;x_1=-\sqrt{2};\)
d) \(x^2-2mx+m-1=0;x_1=2.\)
a) Vì pt có nghiệm theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{8}{12}=\dfrac{2}{3}\\x_1\cdot x_2=\dfrac{1}{12}\end{matrix}\right.\)
Thay \(x_1=\dfrac{1}{2}\) ta có : \(x_2=\dfrac{2}{3}-x_1=\dfrac{2}{3}-\dfrac{1}{2}=\dfrac{1}{6}\)
b) Vì pt có nghiệm theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{2}\\x_1\cdot x_2=\dfrac{-39}{2}\end{matrix}\right.\)
Thay \(x_1=-3\) ta có : \(x_2=\dfrac{7}{2}-x_1=\dfrac{7}{2}-\left(-3\right)=\dfrac{13}{2}\)
c) Vì pt có nghiệm theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1\cdot x_2=-2+\sqrt{2}\end{matrix}\right.\)
Thay \(x_1=-\sqrt{2}\) ta có : \(x_2=-1-x_1=-1-\left(-\sqrt{2}\right)=\sqrt{2}-1\)
d) Thay \(x_1=2\) vào pt ta có
\(2^2-2m\cdot2+m-1=0\)
\(\Leftrightarrow4-4m+m-1=0\\ \Leftrightarrow3-3m=0\\ \Leftrightarrow-3m=-3\\ \Leftrightarrow m=1\)
Vì pt \(x^2-2mx+m-1=0\) có nghiệm theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=m-1\end{matrix}\right.\)
Thay \(x_1=2\) ta có :
\(x_2=2m-x_1=2\cdot1-2=0\)
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m: 2 x 2 – (4m + 3)x + 2 m 2 – 1 = 0
2 x 2 – (4m + 3)x + 2 m 2 – 1 = 0 (2)
Phương trình (2) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có: ∆ = - 4 m + 3 2 – 4.2(2 m 2 – 1)
= 16 m 2 + 24m + 9 – 16 m 2 + 8 = 24m + 17
∆ ≥ 0 ⇔ 24m + 17 ≥ 0 ⇔ m ≥ -17/24
Vậy khi m ≥ -17/24 thì phương trình đã cho có nghiệm.
Giải phương trình (2) theo m:
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m: m x 2 + (2m – 1)x + m + 2 = 0
m x 2 + (2m – 1)x + m + 2 = 0 (1)
*Nếu m = 0, ta có (1) ⇔ -x + 2 = 0 ⇔ x = 2
*Nếu m ≠ 0 thì (1) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có : ∆ = 2 m - 1 2 – 4m(m + 2) = 4 m 2 – 4m + 1 – 4 m 2 – 8m
= -12m + 1
∆ ≥ 0 ⇔ -12m + 1 ≥ 0 ⇔ m ≤ 1/12
Vậy khi m ≤ 1/12 thì phương trình đã cho có nghiệm.
Giải phương trình (1) theo m :
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m:
a. mx2 + (2m – 1)x + m + 2 = 0 b. 2x2 - (4m +3)x + 2m2 - 1 = 0
c. x2 – 2(m + 3)x + m2 + 3 = 0 d. (m + 1)x2 + 4mx + 4m +1 = 0
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
cho phương trình (m=2)x^-(2m-1).
a cmr phương trình có nghiệm với mọi m .
b, tìm m sao cho phương trình có 2 nghiệm phân biệt x1;x2. khi đó hãy tìm giá trị của m để nghiệm này gấp 2 lần nghiệm kia