Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng: x3 – 3x2 – 9x + m = 0
A. m = 0
B. m = 7
C. m = 9
D. m = 11
tìm tất cả các giá trị của tham số m để phương trình x3-3x2+mx+2m-1=0 có 3 nghiệm phân biệt lập thành cấp số cộng
Theo hệ thức Viet: \(x_1+x_2+x_3=-\dfrac{b}{a}=3\)
Do 3 nghiệm lập thành cấp số cộng
\(\Rightarrow x_1+x_2+x_3=3x_2\)
\(\Rightarrow3x_2=3\Rightarrow x_2=1\)
Thế vào pt ban đầu:
\(\Rightarrow1-3+m+2m-1=0\Rightarrow m=1\)
Tìm tất cả các giá trị của tham số m để phương trình x 3 − 3 x 2 + m x + 2 − m = 0 có 3 nghiệm lập thành cấp số cộng.
A. m ≤ 3
B. m ≥ 3
C. m = 0
D. m tùy ý
Đáp án B
Ta có:
x 3 − 3 x 2 + m x + 2 − m = 0 ⇔ x − 1 x 2 − 2 x + m − 2 = 0 ⇔ x = 1 x 2 − 2 x + m − 2 = 0 2
(2) có 2 nghiệm nếu = 1 − m − 2 ≥ 0 ⇔ m ≤ 3 .
Khi đó 2 nghiệm là:
x 1 = 1 + 3 − m ; x 2 = 1 − 3 − m
Ta thấy 3 giá trị 1 + 3 − m ; 1 ; 1 − 3 − m theo thứ tự luôn lập thành một cấp số cộng.
Vậy m ≤ 3
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x 3 − 7 x 2 + 2 m 2 + 6 m x − 8 = 0.
A. m = -7
B. m= 1
C. m = -1 hoặc m= 7
D. m = 1 hoặc m = -7
Chọn D
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x 1 , x 2 , x 3 lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có x 1 . x 2 . x 3 = 8
Theo tính chất của cấp số nhân, ta có x 1 x 3 = x 2 2 . Suy ra ta có x 2 3 = 8 ⇔ x 2 = 2.
Với nghiệm x=2, ta có m 2 + 6 m − 7 = 0 ⇔ m = 1 m = − 7
+ Điều kiện đủ: Với m= 1 hoặc m = -7 thì m 2 + 6 m = 7 nên ta có phương trình: x 3 − 7 x 2 + 14 x − 8 = 0.
Giải phương trình này, ta được các nghiệm là 1,2,4 Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2
Vậy m= 1 và m= -7 là các giá trị cần tìm.
Tìm m để phương trình x 3 − 3 x 2 − 9 x + m = 0 có ba nghiệm phân biệt lập thành cấp số cộng.
A. m = 16
B. m= 11
C. m= 13
D. m = 12
Chọn B.
Điều cần cần:
Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng.
Khi đó: x 1 + x 3 = 2 x 2 ,
Lại có :
x 1 + x 2 + x 3 = − b a = 3 ⇒ x 2 = 1
Thay vào phương trình ta được: 13 – 3.12 – 9.1 + m =0
⇔ m = 11
* Điều kiện đủ : Với m =11 phương trình trở thành :
x 3 − 3 x 2 − 9 x + 11 = 0
⇔ x − 1 x 2 − 2 x − 11 = 0 ⇔ x 1 = 1 − 12 , x 2 = 1, x 3 = 1 + 12
Ba nghiệm này lập thành cấp số cộng.
Vậy m =11 là giá trị cần tìm.
Tìm m để phương trình x 3 − 3 x 2 − 9 x + m = 0 (1) có ba nghiệm phân biệt lập thành cấp số cộng.
A. m = 10
B. m = 11
C. m = 12
D. m = 9
Đáp án A
Điều kiện cần: Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng, khi đó
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x3 – 7mx2 + 2(m2 + 6m)x – 64 = 0.
A. m = 8
B. m = 0
C. m = -1hoặc m = 7
D. m = 0 hoặc m = 8
Chọn A.
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x1; x2; x3 lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có x1.x2.x3 = 64
Theo tính chất của cấp số nhân, ta có x1x3 = x22. Suy ra ta có x23 = 64 ⇔ x2 = 4
Thay x = 4 vào phương trình đã cho ta được: 43 – 7m.42 + 2(m2 + 6m).4 – 64 = 0
⇔ m2 – 8m = 0
+ Điều kiện đủ: Với m = 0 thay vào phương trình đã cho ta được: x3 – 64 = 0 hay x = 4
(nghiệm kép-loại)
Với m = 8 thay vào phương trình đã cho nên ta có phương trình x3 – 56x2 + 224x – 64 = 0
Giải phương trình này, ta được 3 nghiệm phân biệt lập thành cấp số nhân.
Vậy m = 8 là giá trị cần tìm.
Giá trị của m để phương trình có ba nghiệm phân biệt lập thành một cấp số cộng x 3 - 3 x 2 + x - m = 0 thuộc khoảng nào trong các khoảng dưới đây?
A.(2;4)
B.(-2;0)
C.(0;2)
D.(-4;2)
Giá trị của m để phương trình x 3 - 3 x 2 + x - m = 0 có ba nghiệm phân biệt lập thành một cấp số cộng thuộc khoảng nào trong các khoảng dưới đây?
A. (2;4).
B. (-2;0).
C. (0;2).
D. (-4;2).
Chọn B.
Xét hàm số f(x) = x 3 - 3 x 2 + x - m ,
Điểm uốn của đồ thị hàm số là A (1;-1-m).
Phương trình x 3 - 3 x 2 + x - m = 0 có ba nghiệm phân biệt lập thành một cấp số cộng.
Xác định m để: Phương trình x3 – 3x2 – 9x + m = 0 có ba nghiệm phân biệt lập thành cấp số cộng.
A. m = 16
B. m = 11
C. m = 13
D. m = 12
Chọn B.
Giải sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng.
Khi đó: x1 + x3 = 2x2, x1 + x2 + x3 = 3 ⇒ x2 = 1
Thay vào phương trình ta có m = 11.
Với m = 11 ta có phương trình : x3 – 3x2 – 9x + 11 = 0
⇔ (x – 1)(x2 – 2x – 11) = 0 ⇔
Ba nghiệm này lập thành CSC.
Vậy m = 11 là giá trị cần tìm.