Cho tam giác ABC có ∠ A = 70 o , ∠ B = 30 o . Cạnh lớn nhất của tam giác ABC là:
A. Cạnh AB
B. Cạnh BC
C. Cạnh CA
D. AB và CA
Cho tam giác ABC có \(\widehat A = \)\({100^0}\),\(\widehat B\)\( = {40^o}\).
a) Tìm cạnh lớn nhất của tam giác ABC.
b) Tam giác ABC là tam giác gì? Vì sao?
a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.
\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)
b)
Theo định lí tổng 3 góc trong tam giác ABC, ta có:
\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)
\( \Rightarrow\widehat C = \widehat B = {40^o}\)
\( \Rightarrow \) ABC là tam giác cân tại A.
Cho tam giác ABC có góc A = 50o, góc B = 70o. Tia phân giác của góc C cắt cạnh AB tại M. Tính góc AMC và góc BMC.
Câu hỏi của Duy Đinh Tiến - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này nhé!
: Tam giác ABC có các góc A, B , C lần lượt tỉ lệ với các số 2; 3 và 4 thì số đo các góc của tam giác ABC là:
A. góc A bằng 40\(^o\); góc B bằng 60\(^o\) ; góc C bằng 80\(^o\)
B. góc A bằng 30\(^o\) ; góc B bằng 70\(^o\); góc C bằng 80\(^o\)
C. góc A bằng 80\(^o\); góc B bằng 60\(^o\); góc C bằng 40\(^o\)
A. góc A bằng 40*; góc B bằng 60*; góc C bằng 80*
Cho tam giác ABC có góc A=70 độ.Vẽ đường p/giác ở góc B và góc C cắt nhau tại O.
a)Tính góc BOC
b)Kẻ tia AO.Hãy tính góc BAO
c)Điểm O có cách đều 3 cạnh của tam giác ABC.Vì sao?
cho tam giác ABC có góc A = 70 độ. họi O là giao điểm của 2 đường phân giác xuất phát từ điểm B và C.
a, Tính góc BOC
b,Kẻ tia AO. hãy tính góc BAO
c, Điểm O có cách đều 2 cạnh của tam giác ABC hay không
Cho tam giác ABC có \(a = 10,\widehat A = {45^o},\widehat B = {70^o}\). Tính R,b,c.
Áp dụng định lí sin trong tam giác ABC ta có:
\(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\)
\( \Rightarrow R = \dfrac{a}{{2\sin A}};\;\;b = \dfrac{{a.\sin B}}{{\sin A}}\)
Mà \(a = 10,\widehat A = {45^o},\widehat B = {70^o}\)
\( \Rightarrow R = \dfrac{{10}}{{2\sin {{45}^o}}} = 5\sqrt 2 ;\;\;b = \dfrac{{a.\sin {{70}^o}}}{{\sin {{45}^o}}} \approx 13,29\)
Mặt khác: \(\widehat A = {45^o},\widehat B = {70^o} \Rightarrow \widehat C = {65^o}\)
Từ định lí sin ta suy ra: \(c = \dfrac{{a.\sin C}}{{\sin A}} = \dfrac{{10.\sin {{65}^o}}}{{\sin {{45}^o}}} \approx 12,82.\)
Vậy \(R = 5\sqrt 2 ;\;\;b \approx 13,29\); \(c \approx 12,82.\)
a) Cho tam giác ABC vuông tại A. Tia phân giác BD chia AC thành 2 phần sao cho CD = 2AD. Tính số đo góc ABC.
b) Cho tam giác ABC có A = 70o, B = 60o. Đường tròn tâm O ngoại tiếp tam giác ABC. Tính số đo góc AOB.
a)
Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)
\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)
b,
Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ
\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)
Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)
Cho tam giác ABC có góc B=70o;gócC=30o.Tia phân giác của góc A cắt BC tại D.KẺ AH vuông góc BC(H thuộc BC).Tính góc BAC? góc HAD? góc ADH ?
tam giác ABC có góc A= 30\(^0\) , góc B = 70\(^o\). tính số đo góc C
tam giác ABC vuông góc tại A, có góc C = 40\(^o\). tính số đo gócB?
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...
cho tam giác ABC nội tiếp đường tròn (O) có góc A = 60 , B=50. so sánh các cạnh của tam giác ABC và các cung lớn AB,BC, AC
hjuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu