Cho tam giác ABC cân, A B = 3 c m , B C = 4 c m
c. So sánh các góc của tam giác ABC
Cho tam giác ABC cân tại A, hai đường trung tuyến BM, CN cắt nhau tại K.
a) C/m : tam giác BNC = tam giác CMB
b) C/m : tam giác BKC cân tại K.
c) C/m : BC < 4.KM
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)
Cho tam giác ABC cân tại A
Cho tam giác ABC cân tại A, góc B = 60 độ. Trên tia đối của BC lấy điểm m, trên tia đối của CB lấy điểm N sao cho BM=CN
a)C/m AB=AC
b)C/m tam giác ABM =tam giác ACN
c)C/m tam giác AMN là tam giác cân
a: Ta có: ΔABC cân tại A
nên AB=AC
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
c: Ta có: ΔABM=ΔACN
nên AM=AN
hay ΔAMN cân tại A
cho tam giác ABC cân tại A,kẻ các đường phân giác BE,CF của góc B,C
a)C/m tam giác BFC= tam giác CEB
b)c/m tứ giác BFEC là hthang cân
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM,CN cắt nhau tại K
a, C/M tam giác BNC=tam giác CMB
b,C/M tam giác BKC cân tại K
c,C/M BC<4.KM
vẽ hình hộ mình luôn nha
Cho tam giác ABC cân tại A, trên AB lấy điểm M, vẽ tia Mx//BC cắt AC tại N a) Chứng minh tam giác AMN là tam giác cân b) C/m tứ giác BMNC là hình thang cân c) C/m BN=CM
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
mà AB=AC
nên AM=AN
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
Cho tam giác ABC cân tại A, trên AB lấy điểm M, vẽ tia Mx//BC cắt AC tại N a) Chứng minh tam giác AMN là tam giác cân b) C/m tứ giác BMNC là hình thang cân c) C/m BN=CM
a) Ta có: MN//BC(gt)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ABC}\\\widehat{ANM}=\widehat{ACB}\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
=> Tam giác AMN cân tại A
b) Xét tứ giác BMNC có:
MN//BC
\(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
=> BMNC là hthang cân
c) Ta có: BMNC là hthang cân
=> BN=MC
Cho tam giác ABC đều. Vẽ tam giác BCM vuông cân tại B sao cho M và A thuộc cùng một nửa mặt phẳng bờ BC. Vẽ tam giác ABN vuông cân tại A ra ngoài ta giác ABC. CMR 3 điểm C,M,N thẳng hàng
cho tam giác abc vuông cân tại a lấy p thuộc ab lấy q thuộc ac sao cho ap=cq. m là trung điểm bc a, c/m tam giác amp=cmq b,c/m tam giác mpq vuông cân
Cho tam giác ABC cân tại A , có AD là đường phân giác
a. c/m tam giác ABD = tam giác ACD
b. gọi G là trọng tâm của tam giác ABC , c/m 3 điểm A , G , D thẳng hàng
c. tính dg , biết AB = 13cm , BC = 10 cm
câu a rất đơn giản, bạn tự làm nhé
b) xét tam giác ABC cân tại A có Ad lừ đường phân giác từ đỉnh => AD là trung tuyến ứng với BC
mà G là trọng tâm của tam giác ABC => A,G,D thẳng hàng
c) vì tam giác abd= tam giác acd (câu a) => DB= DC( 2 cạnh tương ứng) => DB= 1/2 BC = 10cm/2 = 5cm
xét tam giác abc cân tại a có ad là trung tuyến ứng với cạnh đấy => ad là đường cáo ứng với cạnh đáy => ADB = 90o
Áp dụng định lý Pytago cho tam giác ABD vuông tại D ta có AD2 +DB2 = AB2
... bạn tự tính tiếp nhé =.> AD= 12cm
mà G là trọng tâm => DG = 1/3 AD
DG= 12cm/3 = 4cm
vậy DG=4cm(dpcm)
câu a rất đơn giản, bạn tự làm nhé
b) xét tam giác ABC cân tại A có Ad lừ đường phân giác từ đỉnh => AD là trung tuyến ứng với BC
mà G là trọng tâm của tam giác ABC => A,G,D thẳng hàng
c) vì tam giác abd= tam giác acd (câu a) => DB= DC( 2 cạnh tương ứng) => DB= 1/2 BC = 10cm/2 = 5cm
xét tam giác abc cân tại a có ad là trung tuyến ứng với cạnh đấy => ad là đường cáo ứng với cạnh đáy => ADB = 90o
Áp dụng định lý Pytago cho tam giác ABD vuông tại D ta có AD2 +DB2 = AB2
... bạn tự tính tiếp nhé =.> AD= 12cm
mà G là trọng tâm => DG = 1/3 AD
DG= 12cm/3 = 4cm
vậy DG=4cm(dpcm)
Cho tam giác ABC vuông tại A. M là trung điểm BC
A ) c/m tam giác AMC cân
B) c/m tam giác AMB cân