Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thẩm Quang Huy
Xem chi tiết
Nguyễn Tấn Phát
17 tháng 5 2019 lúc 20:03

Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)

Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

kudo shinichi
17 tháng 5 2019 lúc 21:52

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)

\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

do trang
Xem chi tiết
thiên thần bóng đêm
Xem chi tiết
Đen đủi mất cái nik
5 tháng 10 2018 lúc 21:16

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

b,

Ta có:

\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

Me Mo Mi
Xem chi tiết
Lê Nguyên Hạo
5 tháng 7 2016 lúc 13:03

Nếu :  a + b + c = 0 
=> a + b = -c 
=> (a + b)3 = -c3 
=>a3+b3+c3 =-3ab(a + b)=3abc

Lê Nguyên Hạo
5 tháng 7 2016 lúc 13:03

Chỉ biết vậy thôi!!!!

Lê Chí Công
5 tháng 7 2016 lúc 13:14


a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

Vay............................

Shenkai
Xem chi tiết
Math
Xem chi tiết
Mai Anh
15 tháng 2 2018 lúc 16:40

Từ \(a+b+c=0\Leftrightarrow a+b=-c\)

                                    \(\Leftrightarrow\left(a+b\right)^3=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+c^3=3abc\)

Trân Thuy Quynh
Xem chi tiết
an
27 tháng 12 2017 lúc 11:45

ta co :a + b+c=0

=>(a+b+c)^3= 0

<=>  a^3 + b^3 + c^3 + 3a^2b+3a^2c + 3b^2a+3b^2c + 3c^2a+3c^2b + 6abc =0

<=>(a^3+b^3+c^3) + (3a^2b+3a^2c+3abc ) +(3b^2a+3b^c +3abc) +(3c^2a+3c^b +3abc )  - 3abc=0

<=>(a^3+b^3+c^3) + 3a(ab+ac+bc) + 3b(ab+bc+ac) + 3c(ac+bc+ab) - 3abc=0

<=>(a^3+b^3+c^3) +3(ab+bc+ac)(a+b+c) -3abc=0

<=>(a^3+b^3+c^3) +3(ab+bc+ac).0 - 3abc =0 

<=> a^3+b^3+c^3 -3abc=0

=>a^3+b^3+c^3 =3abc (dpcm)

Phúc
27 tháng 12 2017 lúc 12:43

Ta co

\(a^3+b^3+c^3-3abc\)

=\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)

Ma a+b+c=3

=>\(a^3+b^3+c^3-3abc=0\)

=>\(a^3+b^3+c^3=3abc\)(\(ĐPCM\))

Phúc
27 tháng 12 2017 lúc 12:44

a+b+c=0 nhe minh ghi nham =3

hải linh
Xem chi tiết
bui thanh thao
19 tháng 8 2018 lúc 14:24

 a³ + b³ + c³ = 3abc 
<=> a³ + b³ + c³ - 3abc = 0 
<=> a³ + b³ + 3a²b + 3ab² - 3a²b - 3ab² + c³ - 3abc = 0 
<=> (a+b)³ - 3a²b - 3ab² + c³ - 3abc = 0 
<=> [(a+b)³ + c³] – 3ab(a + b + c) = 0 
<=> (a+b+c)[(a+b)² - c(a+b) + c²] – 3ab(a+b+c) = 0 
<=> (a+b+c)(a² + 2ab + b² - ac – bc + c² - 3ab) = 0 
<=> (a+b+c)(a² + b² + c² - bc – ab – ca) = 0 
<=>{a + b +c = 0, a;b;c là các số dương => a = b = c 
hoặc {a² + b² + c² - bc – ab – ca = 0 
<=> 2a² + 2b² + 2c² - 2bc – 2ab – 2ca = 0 
<=> (a² - 2ab + b²) + (b² - 2bc + c²) + (c² - 2ac + a²) = 0 
<=> (a - b)² + (b - c)² + (c - a)² = 0 
mà (a - b)² ≥ 0 với mọi a;b 
(b - c)² ≥ 0 với mọi b;c 
(c - a)² ≥ 0 với mọi a;c 
nên ta có a - b = b - c = c - a 
=> a = b =c

Doraemon
19 tháng 8 2018 lúc 14:25

Ta có:\(a^3+b^3+c^3=\left(a+b+c\right).\left(a^2+b^2+c^2-a.b-b.c-a.c\right)+3.a.b.c=3.a.b.c\)

                                 \(=\left(a+b+c\right).\left(a^2+b^2+c^2-a.b-b.c-a.c\right)=0\)

Ta thấy a, b, c là số dương nên a + b + c khác 0 suy ra \(\left(a^2+b^2+c^2-a.b-b.c-a.c\right)=0\)nên a = b = c.

Vậy a = b = c

Pain zEd kAmi
19 tháng 8 2018 lúc 14:58

Áp dụng BĐT Cosi cho 3 số không âm ta có:

\(a^3+b^3+c^3\ge3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a^3=b^3=c^3\) nên suy ra a = b = c

Mà \(a^3+b^3+c^3=3abc\)

Nên suy ra đpcm :))))

tài nguyên
Xem chi tiết
Lương Thị Phương
12 tháng 8 lúc 8:47

Giả thiết: \(a + b + c = 0\)
Cần chứng minh: \(a^{3} + b^{3} + c^{3} = 3 a b c\)

Bước 1: Công thức tổng lập phương kinh điển:

\(a^{3} + b^{3} + c^{3} - 3 a b c = \left(\right. a + b + c \left.\right) \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right)\)

Bước 2: Thay \(a + b + c = 0\) vào:

\(a^{3} + b^{3} + c^{3} - 3 a b c = 0 \cdot \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right) = 0\)

Bước 3: Suy ra:

\(a^{3} + b^{3} + c^{3} = 3 a b c\).

VŨ HẢI TÂN
12 tháng 8 lúc 8:47

Ok bro, ngắn gọn nè:

Giả sử: \(a + b + c = 0\)

Ta dùng hằng đẳng thức:

\(a^{3} + b^{3} + c^{3} - 3 a b c = \left(\right. a + b + c \left.\right) \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right)\)

\(a + b + c = 0\) ⇒ vế phải = 0

\(a^{3} + b^{3} + c^{3} = 3 a b c\)

Q.E.D. ✅

professor
12 tháng 8 lúc 8:51

ta có: \(a^3b^3c^3=\left(abc\right)^3\)
mà \(abc=0\)
\(\Rightarrow\left(abc\right)^3=0\)
\(\Rightarrow a^3b^3c^3=0\)
và \(3abc=0\)
\(\Rightarrow a^3b^3c^3=3abc\)

Băng Băng
Xem chi tiết
Phạm Tuấn Đạt
5 tháng 11 2017 lúc 16:12

 ta có:a^3+b^3+c^3=3abc 
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0 
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b... 
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0 
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]... 
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)

OoO_Nhok_Nghịch_Ngợm_OoO
5 tháng 11 2017 lúc 19:04

a+ b +c = 0