Nếu : a + b + c = 0
=> a + b = -c
=> (a + b)3 = -c3
=>a3+b3+c3 =-3ab(a + b)=3abc
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
Vay............................
TH1: a+b+c=0 <=> a+b=-c
Xét vế trái:VT= a3+b3+c3=(a+b)(a2-ab+b2)+c3=-c[(a2+2ab+b2)-3ab]+c3=-c[(a+b)2-3ab]+c3=-c(c2-3ab)+c3=-c3+3abc+c3=3abc=VP (đpcm)
TH2: a=b=c=0
=> VT=03+03+03=0, VP=3.0.0.0=0
=> VT=VP(=0) (đpcm)