Cho 4 số a, b, c, d thỏa mãn . Số lớn nhất trong 4 số log a b , log b c , log c d , log d a là:
A. log a b
B. log b c
C. log c d
D. l o d d a
Cho các số thực dương a,b thỏa mãn log a = x , log b = y . Tính P = log ( a 2 b 3 )
Cho a,b là các số thực thỏa mãn log 2 . log 2 a - log b = 2 . Hỏi a,b thỏa mãn hệ thức nào dưới đây?
A. a = 100b
B. a = 100 - b
C. a = =100 + b
D. a = 100 b
Cho a, b là các số thực dương thỏa mãn log 2 a + log 2 b = 0.
Cho a,b,c là các số thực dương thỏa mãn a log 5 2 = 4 , b log 4 6 = 1 , log , c log 7 3 = 49 Tính giá trị của biểu thức T = a log 2 2 5 + b log 4 2 6 + 3 c log 7 2 3
A. T=126
B. T = 5 + 2 3
C. T=88
D. T = 3 - 2 3
Cho a là số nguyên dương lớn nhất thỏa mãn \(3{\log _3}\left( {1 + \sqrt a + \sqrt[3]{a}} \right) > 2{\log _2}\sqrt a\).Tìm phần nguyên của \({\log _2}\left( {2017a} \right)\)
A.14
B.22
C.16
D.19
Cho 4 số a, b, c, d thỏa mãn 0 < a < b < 1 < c < d . Số lớn nhất trong 4 số log a b , log b c , log c d , log d a là:
A. log a b .
B. log b c .
C. log c d .
D. log d a .
Đáp án C
log a b < log a a = 1 , log b c < log b b = 1 , log d a < log d d = 1 log c d > log c c = 1
Đề bài
Cho hai số thực dương a, b thỏa mãn \({a^3}{b^2} = 100\). Tính giá trị của biểu thức \(P = 3\log a + 2\log b\)
\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Đáp án D.
Ta có
Khi đó
Đồng nhất hệ số, ta được
Số nguyên \(x\) nhỏ nhất thoả mãn \({\log _{0,1}}\left( {1 - 2x} \right) > - 1\) là
A. \(x = 0\).
B. \(x = 1\).
C. \(x = - 5\).
D. \(x = - 4\).
ĐK: \(1-2x>0\Leftrightarrow x< \dfrac{1}{2}\)
\(log_{0,1}\left(1-2x\right)>-1\\ \Leftrightarrow1-2x< 10\\ \Leftrightarrow2x>-9\\ \Leftrightarrow x>-\dfrac{9}{2}\)
Kết hợp với ĐKXĐ, ta được: \(-\dfrac{9}{2}< x< \dfrac{1}{2}\)
Vậy số nguyên x nhỏ nhất thỏa mãn \(log_{0,1}\left(1-2x\right)>-1\) là \(x=-4\)
Chọn D.