Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2018 lúc 12:32

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có ( α ) là (ABB’). Vì OO’ // ( α ) nên khoảng cách giữa OO’ và ( α ) bằng khoảng cách từ O đến ( α ). Dựng OH ⊥ AB′ ta có OH ⊥ ( α ).

Vậy khoảng cách cần tìm là Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2018 lúc 15:56


Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 6 2018 lúc 16:57

Giải bài 1 trang 39 sgk Hình học 12 | Để học tốt Toán 12

Gọi d là đường thẳng vuông góc với mặt phẳng (P) tại tâm O của đường tròn (T).

Từ điểm M trên đường tròn (T), vẽ đường thẳng Δ vuông góc với mặt phẳng (P).

Khi đó đường thẳng Δ song song với d và luôn cách d một khoảng bằng r.

Đường thẳng Δ thuộc mặt trụ tròn xoay có trục là đường thẳng d và bán kính r.

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 7 2017 lúc 7:36

Chọn đáp án C

Ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

 

Nên A nằm trong đường tròn tâm O bán kính R = 2

Bình luận (0)
Sách Giáo Khoa
Xem chi tiết
Võ Đông Anh Tuấn
1 tháng 4 2017 lúc 11:17

Xét đường thẳng ∆ đi qua điểm O và vuông gó với mặt phẳng (P). Gọi l là đưởng thẳng đi qua M0 ε (C) và l vuông góc với (P). Do đó l // ∆. Quay mặt phẳng (Q) tạo bởi l và ∆ quanh đường thẳng ∆, thì đường thẳng l vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm M ε (C) và vuông góc với (P). Trục của mặt trụ là ∆ và bán kính của trụ bằng r.

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2018 lúc 16:58

Gọi I a ; - a a > 0  thuộc đường thẳng y = - x

 

 

(S) tiếp xúc với các trục tọa độ 

 

Chọn B.

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 3 2018 lúc 15:11

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.

Bình luận (0)
Võ nguyễn Thái
Xem chi tiết
Võ Đông Anh Tuấn
1 tháng 4 2016 lúc 16:53

Xét đường thẳng ∆ đi qua điểm O và vuông gó với mặt phẳng (P). Gọi l là đưởng thẳng đi qua M0 ε (C) và l vuông góc với (P). Do đó l // ∆. Quay mặt phẳng (Q) tạo bởi l và ∆ quanh đường thẳng ∆, thì đường thẳng l vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm M ε (C) và vuông góc với (P). Trục của mặt trụ là ∆ và bán kính của trụ bằng r.

 
Bình luận (0)
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:17

a) Ta có: \(\left( C \right):{x^2} + {y^2} = 1 \Leftrightarrow y =  \pm \sqrt {1 - {x^2}} \).

Độ dài \(OM\) chính là giá trị tuyệt đối của hoành độ của điểm \(M\). Vậy \(OM = \left| x \right|\).

Độ dài \(MN\) chính là giá trị tuyệt đối của tung độ của điểm \(N\). Vậy \(MN = \left| {\sqrt {1 - {x^2}} } \right| = \sqrt {1 - {x^2}} \).

\(S\left( x \right) = {S_{ONP}} = \frac{1}{2}.NP.OM = MN.OM = \sqrt {1 - {x^2}} .\left| x \right|\).

b) Xét hàm số  \(S\left( x \right) = \sqrt {1 - {x^2}} .\left| x \right| = \left\{ {\begin{array}{*{20}{c}}{x\sqrt {1 - {x^2}} }&{khi\,\,0 \le x \le 1}\\{ - x\sqrt {1 - {x^2}} }&{khi\,\, - 1 \le x < 0}\end{array}} \right.\).

ĐKXĐ: \(1 - {x^2} \ge 0 \Leftrightarrow  - 1 \le x \le 1\)

Hàm số \(S\left( x \right)\) có tập xác định là \(\left[ { - 1;1} \right]\).

Vậy hàm số \(S\left( x \right)\) xác định trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\) nên liên tục trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\).

Ta có: \(S\left( 0 \right) = 0.\sqrt {1 - {0^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\sqrt {1 - {x^2}} } \right) = 0.\sqrt {1 - {0^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to {0^ - }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\sqrt {1 - {x^2}} } \right) =  - 0.\sqrt {1 - {0^2}}  = 0\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} S\left( x \right) = 0\) nên \(\mathop {\lim }\limits_{x \to 0} S\left( x \right) = 0 = S\left( 0 \right)\)

Vậy hàm số \(S\left( x \right)\) liên tục tại điểm \({x_0} = 0\). Vậy hàm số \(S\left( x \right)\) liên tục trên \(\left( { - 1;1} \right)\).

c) \(\mathop {\lim }\limits_{x \to {1^ - }} S\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x\sqrt {1 - {x^2}} } \right) = 1.\sqrt {1 - {1^2}}  = 0\)

\(\mathop {\lim }\limits_{x \to  - {1^ + }} S\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( { - x\sqrt {1 - {x^2}} } \right) =  - 1.\sqrt {1 - {{\left( { - 1} \right)}^2}}  = 0\)

Bình luận (0)