Từ các chữ số 1,2,3,....,9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau.
A . 3 9
B . A 9 3
C . 9 3
D . C 9 3
Từ các chữ số 1,2,3,....,9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau
A . 3 9
B . A 9 3
C . 9 3
D . C 9 3
Chọn B
Gọi số cần tìm có dạng là
Mỗi bộ ba số là một chỉnh hợp chập 3 của 9 phần tử.
Vậy số các số cần tìm là A 9 3 số.
Từ các chữ số 1,2,3,4,5,6,7 , lập được bao nhiêu số tự nhiên
a) Có 4 chữ số đôi một khác nhau?
b) Có 3 chữ số đôi một khác nhau và chia hết cho 9?
c) Là số chẵn và có 5 chữ số đôi một khác nhau?
d) Có 9 chữ số sao cho chữ số 1 có mặt 3 lần, các chữ số khác có mặt đúng một lần?
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
Từ các chữ số 1; 2; 3;…; 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau.
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số gồm 3 chữ số đôi một khác nhau không chia hết cho 9
Từ các số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau từng đôi một và tổng các chữ số không bé hơn 9
Từ các chữ số: 0; 1; 2; 3; 6; 7; 8; 9 có thể lập được bao nhiêu số tự nhiên gồm có sáu chữ số đôi một khác nhau, trong đó phải có mặt chữ số 7.
Gọi các số thỏa mãn đề là \(\overline{abcdef}\) (đôi một khác nhau)
- Số 7 có thể ở cả 6 vị trí.
+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)
+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)
=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)
Gọi chữ số cần lập là \(\overline{abcdef}\)
TH1: có mặt chữ số 0
Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách
Hoán vị 6 chữ số: \(6!-5!=600\) cách
\(\Rightarrow15.600=9000\) số
TH2: không có mặt chữ số 0
Chọn 5 chữ số còn lại: \(C_6^5=6\) cách
Hoán vị 6 chữ số: \(6!=720\) cách
\(\Rightarrow6.720=4320\) số
Vậy có: \(9000+4320=13320\) số thỏa mãn
a. Có thể lập được bao nhiêu số có 3 chữ số khác nhau từ các chữ số: 0, 3, 5, 6 ?
b. Trong các số đã được lập ở trên (phần a) có bao nhiêu số chia hết cho 9 ?
a. Lập số có 3 chữ số thì chữ số hàng trăm phải khác 0, nên chữ số hàng trăm có 3 cách chọn (3,5,6). Hàng chục có 3 cách chọn, hàng đơn vị có 2 cách chọn.
Vậy số các số phải tìm là: 3 x 3 x 2 = 18 (số)
b. Trong các số trên các số chia hết cho 9 là: 306, 360, 603, 630.
Bài 1) Cho 5 số : 0,1,2,3,4 . Từ các chữ số trên có thể lập được bao nhiêu số tự nhiên :
a) Có 5 chữ số gồm cả 5 chữ số ấy ?
b) Có 4 chữ số có các chữ số khác nhau ?
c) Có 3 chữ số có các chữ số khác nhau ?
d) Có 3 chữ số các chữ số có thể giống nhau ?
Bài 2) Có bao nhiêu số tự nhiên có 4 chữ số lập bởi các chữ số 1,2,3 biết rằng số đó chia hết cho 9.
1a) gọi số cần lập là abcde
(a khác 0...)
chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
Ô tô đi với vận tốc 50km/giờ vì :
100 : 2 = 50
đs : 50
1a) gọi số cần lập là abcde
(a khác 0...)
chọn a thuộc tập số trên\{0} => có 4 cách chọn
chọn b có 5 c
chọn c có 5c
chọn d có 5c
chọn e có 5c
ADQT nhân có 4x5x5x5x5 = ....
vậy có....
b)chọn a khác 0 có 4 c
chọn b khác a có 4c
chọn c khác a và b có 3 c
chọn d khác a, b, c, có 2c
=> ADQT nhân có 4x4x3x2 =...
vậy...
c) chọn a khác o có 4 c
chọn các c/số còn lại là 1 chỉnh hợp chập 2 của 4 phần tử(trừ a) => có 4A2 cách
ADQT nhân có 4x 4A2 =...
Vậy...
d) tương tự câu a
Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
A. 300 số
B. 114 số
C. 225 số
D. 120 số
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.