Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
linh
Xem chi tiết
Nguyên Nguyễn
Xem chi tiết
Pham Huu Khoi
Xem chi tiết
Mai Nhật Huy
Xem chi tiết

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(C=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)

\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2x+2}\)

c: \(C=-\dfrac{1}{2}\)

=>\(\dfrac{1}{2x+2}=-\dfrac{1}{2}\)

=>2x+2=-2

=>2x=-4

=>x=-2(nhận)

d: Để C là số nguyên thì \(2x+2\inƯ\left(1\right)\)

=>\(2x+2\in\left\{1;-1\right\}\)

=>\(2x\in\left\{-1;-3\right\}\)

=>\(x\in\left\{-\dfrac{1}{2};-\dfrac{3}{2}\right\}\)

Tran Thi Xuan
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết
Akai Haruma
20 tháng 9 2023 lúc 20:36

Lời giải:

a. Để bt có nghĩa thì $x^2-x+1\geq 0$

$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$ 

$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)

b.

Để bt có nghĩa thì $x^2-5\geq 0$

$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$

$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$

c. 

Để bt có nghĩa thì: $-x^2+2x-1\geq 0$

$\Leftrightarrow -(x^2-2x+1)\geq 0$

$\Leftrightarrow x^2-2x+1\leq 0$

$\Leftrightarrow (x-1)^2\leq 0(*)$

Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$

Nên $(*)\Leftrightarrow (x-1)^2=0$

$\Leftrightarrow x=1$

d.

Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)

Quang Tuấn
Xem chi tiết
Phạm Thị Mai Anh
2 tháng 7 2020 lúc 18:40

Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0 
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6

Khách vãng lai đã xóa
ngo thai huy
Xem chi tiết
ngo thai huy
23 tháng 12 2021 lúc 15:42

giúp mình mọi người ơi

Trịnh Như Anh
Xem chi tiết
Pham Van Hung
4 tháng 12 2018 lúc 11:50

a, Để C có nghĩa thì \(\hept{\begin{cases}2x-2\ne0\\2-2x\ne0\end{cases}\Rightarrow}x\ne1\)

b, Với x khác 1 thì 

\(C=\frac{x}{2x-2}+\frac{x^2+1}{2-2x}=\frac{-x}{2-2x}+\frac{x^2+1}{2-2x}=\frac{x^2-x+1}{2-2x}\)

c, \(C=-0,5\Rightarrow\frac{x^2-x+1}{2-2x}=\frac{-1}{2}\)

\(\Rightarrow2\left(x^2-x+1\right)=\left(2-2x\right).\left(-1\right)\)

\(\Rightarrow2x^2-2x+2=-2+2x\)

\(\Rightarrow2x^2-2x+2+2-2x=0\)

\(\Rightarrow2x^2-4x+4=0\Rightarrow2\left(x^2-2x+2\right)=0\)

\(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)

Do đó: \(2\left(x^2-2x+2\right)>0\forall x\)

Vậy \(x\in\varnothing\)

Vương Đoá Ngọc
Xem chi tiết