chứng tỏ rằng: ( 32023 - 32021) chia hết cho 8
Chứng minh: 32023 - 32021 \(⋮\) 8
\(3^{2023}-3^{2021}=3^{2021}\left(3^2-1\right)=3^{2021}\cdot8⋮8\)
Tính S=32024-32023+32022-32021+...+32-3
\(S=3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)
\(3S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2\)
\(3S+S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2+3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)\(4S=3^{2025}-3\)
\(S=\dfrac{3^{2025}-3}{4}\)
S = 32024 - 32023 + 32022 - 32021 +... + 32 - 3
3.S = 32025 - 32024 + 32022 -32021 + ....+ 33 - 32
3S + S = 32025 - 32024 + 32022 - 32021 +...+33 - 32+(32024-32023+...-3)
4S = 32025 - 32024 + 32022 - 32021+...+33-32 + 32024-32023+...-3
4S = 32025 - (32024 - 32024) -...-(32 - 32) - 3
4S = 32025 - 3
S = \(\dfrac{3^{2025}-3}{4}\)
Thu gọn C, biết :
C = 32023 - 32022 + 32021 - 32020 + 32019 - ... - 32 + 3.
Giúp mình với!
a) chứng tỏ rằng 85 +2 11 chia hết cho 17
b)chứng tỏ rằng 8 7-2 18chia hết cho 14
c) chứng tỏ rằng 79 2+79.11 chia hết cho 30
d)chứng tỏ rằng 69 2-69.5 chia hết cho 32
B=3+3 3+3 5+.....+3 1991. chứng minh rằng B chia hết cho 13 và 41
11 n+2+12 20+1 chia hết cho 133
10 28 +8 chia hết cho 72
a) 85+211=23.5+211=211(24+1)=211.17 chia hết cho 17
a) chứng tỏ rằng (101234+2)chia hết cho 3
b)chứng tỏ rằng (10789 +8) chia hết cho 9
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9
chứng minh 1+3+32+33+34+...+32023+32024 chia hết cho 13
giúp mik với !!😥😥😥
Đặt \(A=1+3+3^2+3^3+3^4+\cdot\cdot\cdot+3^{2023}+3^{2024}\)
\(=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+\dots+(3^{2022}+3^{2023}+3^{2024})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+\dots+3^{2022}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+\dots+3^{2022}\cdot13\\=13\cdot(1+3^3+3^6+\dots+3^{2022})\)
Vì \(13\cdot(1+3^3+3^6+\dots+3^{2022})\vdots13\)
nên \(A\vdots13\)
\(\Rightarrowđpcm\)
Đặt S=1+3+32+33+34+⋅⋅⋅+32023+32024
S=(1+3+32)+(33+34+35)+⋯+(32022+32023+32024)
S=13+33(1+3+32)+...+32022(1+3+32)
S=13+33.13+...+32022.13
S=13(33+...+32022) ⋮ 13
Vậy S⋮13
Cho (d+2b+4c) chia hết cho 8. chứng tỏ rằng abcd chia hết cho 8
a,cho a=2^1+2^2+2^3+.......+2^30. Chứng tỏ rằng a chia hết cho 21
b,chứng tỏ a=8^8+2^20 chia hết cho 17
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
a) Chứng tỏ rằng tích của 2 số chẵn liên tiếp chia hết cho 8.
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
Chứng tỏ rằng a+b+c+d chia hết cho 9 thì số abcd chia hết cho 4
Chứng tỏ rằng abc chia hết cho 25 khi và chỉ khi bc chia hết cho 25
Chứng tỏ rằng abcd chia hết cho 8 khi và chỉ khi bcd chia hết cho 8
Câu 2 :
Ta có: abc = a00 + bc = a x 100 + bc
Vì a x 100 chia hết cho 25 (trong tích có 100 chia hết cho 25)
=> bc cũng phải chia hết cho 25 (Để abc chia hết cho 25)
Diễn đạt hơi lủng củng để dễ hiểu mong bạn thông cảm