giá trị nhỏ nhất của biểu thức: M = 4 - |5x-2| - |3y +12|
Giá trị nhỏ nhất của biểu thức M= 4-/5x-2/-/3y+12/ là ( hướng dẫn chi tiết giúp mình nha)
Tìm giá trị lớn nhất của biểu thức: E = 4 - |5x - 2| - |3y + 12|
Ta có: -|5x - 2| \(\le\)0 \(\forall\)x
- |3y + 12| \(\le\)0 \(\forall\)y
=> 4 - |5x - 2| - |3y + 12| \(\le\)4 \(\forall\)x; y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)
Vậy MaxE = 4 khi x = 2/5 và y = -4
Ta có : E = 4 - |5x - 2| - |3y + 12|
= 4 - (|5x - 2| + |3y + 12|)
Ta có : \(\hept{\begin{cases}\left|5x-2\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5x-2\right|+\left|3y+12\right|\ge0\forall x;y\)
=> \(-\left(\left|5x-2\right|+\left|3y+12\right|\right)\le0\forall x;y\)
=> \(4-\left(\left|5x-2\right|+\left|3y+12\right|\right)\le4\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x-2=0\\3y+12=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)
Vậy GTLN của E là 4 khi x = 2/5 ; y = - 4
Ta thấy : \(|5x-2|\ge0\)
\(|3x+12|\ge0\)
Cộng theo vế : \(|5x-2|+|3y+12|\ge0\)
Nhân cả 2 vế cho âm 1 và đổi chiều bđt ta được :
\(-|5x-2|-|3y+12|\le0\)
\(< =>4-|5x-2|-|3y+12|\le4\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)
Vậy \(E_{Max}=4\)khi \(\hept{\begin{cases}x=\frac{2}{5}\\y=-4\end{cases}}\)
Với giá trị nào của x,y thì biểu thức C = 4 - |5x - 5| - |3y + 12| đạt giá trị lớn nhất?
A. x = 1; y = 4
B. x = -4; y = 1
C. x = -1; y = 4
D. x = 1; y = -4
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm giá trị nhỏ nhất của biểu thức
A= 5x + 3y + 12/x + 16/y (với x,y>0 và x+y>=6)
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)
Vậy GTNN của x là 6 - y.
Thay 6 - y vào biểu thức đã rút gọn có:
\(A=-2y^3+42y^2-176y-96\)
Giả sử y = 0, ,=> P = -232
Do y > 0 nên P > -232
Vậy: \(Min_P=-232\)
Ta có : \(x+y\ge6\Rightarrow x\ge6-y\\ \)
Vậy GTNN của x là 6-y
Thay \(6-y\) vào biểu thức đã rút gọn có :
\(A=-2y^3+42y^2-176y-96\\ \)
Giả sử \(y=0\Rightarrow P=-232\)
Do \(y>0\) nên \(P>-232\)
Vậy Min \(P=-232\)
giá trị nhỏ nhất của biểu thức 25x^2+3y^2-10x+3y+4
TL
3y2+3y+25x2-10x+4
HT
TL:
3y2 + 3y + 25x2 - 10x + 4
~HT~
= 25x2 - 10x + 1 + 3y2 + 3y + \(\frac{3}{4}\)+ \(\frac{9}{4}\)
= (5x - 1)2 + 3(y + \(\frac{1}{2}\))2 + \(\frac{9}{4}\)> \(\frac{9}{4}\) (Vì (5x - 1)2 >= 0 với mọi x; 3(y + \(\frac{1}{2}\))2 >= 0 với mọi y)
Dấu '=' xảy ra khi
5x - 1 = 0 và y+ \(\frac{1}{2}\) = 0
x = \(\frac{1}{5}\) và y = \(-\frac{1}{2}\)
Vậy ......
(Nếu sai thì mình xin lỗi)
1.tìm giá trị lớn nhất của biểu thức
a,4−|5x−2|−|3y+12|
b,10−4|x−2|
2.tìm giá trị nhỏ nhất
|4x−3|+|5y+7,5|+17,5
mọi người giúp mình với ,mình cần gấp lắm
1.tìm giá trị lớn nhất của biểu thức
a,\(4-|5x-2|-|3y+12|\)
b,\(10-4|x-2|\)
2.tìm giá trị nhỏ nhất
\(|4x-3|+|5y+7,5|+17,5\)
mọi người giúp mình với ,mình cần gấp lắm
Tìm giá trị lớn nhất của biểu thức sau:
\(F=4-\left|5x-2\right|-\left|3y+12\right|\)