Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp.
Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)) \(\left(1\right)\)
Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)
=> tứ giác AEHF là h.c.n
=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)
vì \(\widehat{E_1}+\widehat{BEF}=180^o\)
\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau
=> tứ giác BEFC nội tiếp
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Kẻ đường cao AH, đường kính AD.Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh tứ giác EFCB nội tiếp
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Kẻ đường cao AH, đường kính AD.Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. Chứng minh AD vuông góc với EF
Ta có: Tứ giác ABDC nội tiếp đường tròn (O) => ^DBC=^CAD (1)
Đường tròn (O) có đường kính AD và điểm B thuộc (O) => ^ABD vuông tại B => AB \(\perp\)BD
=> HE // BD (Quan hệ song song vuông góc) => ^DBC=^BHE (So le trong)
^BHE=^BAH (Cùng phụ ^AHE) => ^DBC=^BAH=^EAH.
Dễ thấy tứ giác AEHF là tứ giác nội tiếp (Tâm là trung điểm của AH)
=> ^EAH=^EFH. Mà ^EAH=^DBC (cmt) => ^EFH=^DBC (2)
Từ (1) và (2) => ^CAD=^EFH
Lại có: ^EFH+^AFE=900 ; ^CAD+^ADC=900 => ^AFE=^ADC
=> ^CAD+^AFE=900 => AD\(\perp\)EF (đpcm)
Cho tam giác ABC vuông tại A (AB < AC), có AH là đường cao. Kẻ HE vuông góc AB tại E, kẻ HF vuông góc AC tại F.
a)Chứng minh tứ giác AEHF là hình chữ nhật.
b)Lấy điểm M đối xứng với điểm A qua F. Chứng minh EF // HM.
c)Từ điểm M kẻ đường thẳng song song AH, đường thẳng này cắt tia HF tại N. Chứng minh tứ giác AHMN là hinh thoi.
Cho tam giác ABC vuông tại A (AB < AC), có AH là đường cao . Kẻ HE
vuông góc AB tại E, kẻ HF vuông góc AC tại Ƒ
A) Chứng minh tứ giác AEHF là hình chữ nhật
b) lấy điểm M kẻ đường thẳng song song AH , đường thẳng này cắt tia HF tại N . Chứng minh
tứ giấc EFMH là hình bình hành
c) một mảnh đất hình chữ nhật có chiều dài là (2x+3)² mét vuông và chiều rộng là
(2x-1)² . Biết chiều dài hơn chiều rộng là 36 mét . Tính chu vi mảnh đất
Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH. Kẻ HE vuông góc với AB, kẻ HF vuông góc với AC. Chứng minh rằng :
1) AEHF và BEFC là các tứ giác nội tiếp
2) Góc BAH = góc OAC
Cho tam giác ABC nhọn nội tiếp (O), đường cao AH. Kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh các tứ giác AEHF và BEFC nội tiếp.
b) Chứng minh góc BAH và góc OAC bằng nhau.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
=>góc AEF=góc AHF=góc C
=>góc FEB+góc FCB=180 độ
=>BEFC nội tiếp
b: góc BAH=90 độ-góc ABH
=1/2(180 độ-sđ cung AC)
=góc OAC
Cho tam giác ABC, AB=5cm,AC=12cm,BC=13cm. AH là đường cao tam giác ABC và AH vuông góc với BC
a, Chứng minh: Tam giác ABC là tam giác vuông và tính AH
b, Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh: AE.AB=AF.AC
c, Tam giác AEF đồng dạng tam giác ABC
d,\(\dfrac{EB}{FC}=(\dfrac{AB}{AC})^{3}\)
e, BC.BE.CF=\(AH^{3}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ He vuông góc với AB (E ∈ AB); kẻ HF vuông góc với AC (F ∈ AC)
a) Chứng minh: Tứ giác AEHF là hình chữ nhật
b) Gọi P là điểm đối xứng của H qua AB . Tứ giác APEF là hình gì? Vì sao?
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật