Xét tính chẵn lẻ của các hàm số y = 1/x
Xét tính chẵn lẻ của các hàm số sau: y = x2 + x + 1
Đặt y = f(x) = x2 + x + 1.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)
Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.
Xét tính chẵn lẻ của các hàm số y = √x
y = √x
TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D
Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.
Xét tính chẵn lẻ của các hàm số sau: y = |x|
Đặt y = f(x) = |x|.
+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.
+ f(–x) = |–x| = |x| = f(x).
Vậy hàm số y = |x| là hàm số chẵn.
Xét tính chẵn lẻ của các hàm số sau: y = x3 + x
Đặt y = f(x) = x3 + x.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)
Vậy y = x3 + x là một hàm số lẻ.
Xét tính chẵn lẻ của các hàm số sau: y = (x + 2)2
Đặt y = f(x) = (x + 2)2.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)
+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
Xét tính chẵn, lẻ của các hàm số
y = 3 x 2 - 1
Tập xác định D = R; ∀ x ∈ D có -x ∈ D và
f ( - x ) = 3 . ( - x ) 2 - 1 = 3 x 2 - 1 = f ( x )
Vậy hàm số đã cho là hàm số chẵn.
Xét tính chẵn lẻ của hàm số: y = 1 - x - 1 + x x - 1 - 1 + x
A. hàm số chẵn
B. hàm số lẻ
C. hàm số không chẵn; không lẻ
D. hàm số vừa chẵn vừa lẻ
Miền xác định của hàm là miền đối xứng
\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)
\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ
Xét tính xét tính chẵn lẻ của hàm số sau y = x - sin x
Đặt `y=f(x)=x-sinx`
Có: `f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x)`
`=>` Hàm lẻ.