Tỉ số \(\frac{x}{y}\) biết (2x)^3=y^3
Tìm tỉ số \(\frac{x}{y}\)biết \(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow2\left(x+y\right)=3\left(2x-y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Ta có: \(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3.\left(2x-y\right)=2.\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=3y+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy tỉ số \(\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
=> 3 ( 2x - y ) = 2 ( x + y )
6 x - 3 y = 2 x + 2 y
6 x - 2 x = 2 y + 3 y
4 x = 5 y
=> \(\frac{x}{y}=\frac{5}{4}\)
Tìm tỉ số \(\frac{x}{y}\)biết \(\frac{2x-y}{x+y}=\frac{2}{3}.\)
Theo bài ra ta có:
2x-y/x+y=2/3
=>3(2x-y)=2(x+y)
6x-3y=2x+2y
=>(6x-3y)-(2x+2y)=0
6x-3y-2x-2y=0
4x-y=0
=>4x=y
=>x/y=1/4
Theo đầu bài ta có:
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy.........
Tìm tỉ số \(\frac{x}{y}\)biết x, y thỏa mãn \(\frac{2x-y}{x+y}=\frac{2}{3}\)
Ta có:\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
tìm tỉ số x/y biết x,y thỏa mãn
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{2x-y}{2}=\frac{x+y}{3}=\frac{\left(2x-y\right)-\left(x+y\right)}{2-3}=2y-x\)
\(\Rightarrow2x-y=4y-2x\Rightarrow4x=5y\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Áp dụng công thức lớp 7 ; \(\frac{a}{b}\)= \(\frac{c}{d}\) thì \(\frac{a}{c}\)= \(\frac{b}{d}\)
thì \(\frac{2x-y}{2}\)= \(\frac{x+y}{3}\)= \(\frac{2x-y-\left(x+y\right)}{2-3}\)= \(\frac{x-2y}{-1}\)= - (x - 2y ) = - x + 2y = 2y + (- x) = 2y - x
=> .....................................x/y = 5/4
Câu 1: a) Chia số 552 thành 3 phần tỉ lệ thuận với 3; 4; 5.
b) Chia số 315 thành 3 phần tỉ lệ nghịch với 3; 4; 6.
Câu 2: Tìm các số hữu tỉ x, y, z biết rằng: \(\frac{x}{11}=\frac{y}{12};\frac{y}{3}=\frac{z}{7}\) và 2x - y + z = 512.
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230
b) Gọi 3 phần đó là a, b, c .
Ta có: a, b, c tỉ lệ nghịch với 3, 4, 6 nên \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\Rightarrow\hept{\begin{cases}a=420.\frac{1}{3}=140\\b=420.\frac{1}{4}=105\\c=420.\frac{1}{6}=70\end{cases}}\)
Vậy 3 phần đó lần lượt là 140, 105, 70
Tỉ số \(\frac{x}{y}\) biết (2x)^3 =y^3
Tìm tỉ số \(\frac{x}{y}\), biết x,y thỏa mãn:
\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
=> (2x - y).3 = (x+y) .2
6x - 3y = 2x + 2y
6x - 2x = 3y + 2y
4x = 5y
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)
Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)
Theo bài ra ta có: \(\frac{2x-y}{x+y}=\frac{2}{3}\)
=> 3(2x-y)=2(x+y)
=> 6x-3y=2x+2y
=> 6x-2x=2y+3y
=> 4x=5y
=> \(\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
Tìm tỉ số \(\frac{x}{y}\), biết x, y thỏa mãn:
Ta có : \(\frac{2x-y}{x+y}=\frac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\Leftrightarrow6x-3y=2x+2y\Leftrightarrow4x=5y\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)
Vì \(\frac{2x-y}{x+y}=\frac{2}{3}=>\left(2x-y\right).3=\left(x+y\right).2=>6x-3y=2x+2y\)
\(=>6x-2x=2y-\left(-3y\right)=>6x-2x=2y+3y=>4x=5y=>\frac{x}{y}=\frac{5}{4}\)
Vậy tỉ số x/y=5/4
1 . Tìm tỉ số \(\frac{x}{y}\) , biết x , y thỏa mãn \(\frac{2x-y}{x+y}=\frac{2}{3}\)
2 . \(\frac{x-1}{2019}=\frac{3-y}{2020}\) và x - y = 4037