Cho tam giác ABC có góc B và góc C đều nhọn , phân giác AM ,M thuộc BC . Đường thẳng M vuông góc BC cắt đường thẳng AB tại N .
Chứng minh tam giác ABC vuông <=>MN=MC
Cho tam giác ABC có 3 góc nhọn. Qua A vẽ đường thẳng vuông góc với AB. Đường thẳng này cắt tia phân giác góc ABC tại M. Kẻ MH vuông góc với BC(H thuộc BC)
a) Chứng minh tam giác ABM = tam giác HBM
b) Kẻ đường cao Ak của tam giác ABC. Chứng minh AK // HM
c) Gọi N là giao điểm của BM và AK. Chứng minh HN // AM
Cho tam giác ABC vuông tại A. Biết AC = 12cm, BC = 15cm
a) Tính độ dài cạnh AB
b)Tia phân giác của góc B cắt AC tại M. Vẽ MN vuông góc với BC ( N thuộc BC ). Chứng minh AM=MN
c) Một đường thẳng qua C và vuông góc với đường thẳng BM tại E, cắt đường thẳng AB tại D. Chứng minh AD = NC
a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>MA=MN
c: Xét ΔBDC có
BE là đừog cao, là phân giác
nên ΔBDC cân tại B
=>BD=BC
BA+AD=BD
BN+NC=BC
mà BD=BC; BA=BN
nên AD=NC
Cho tam giác ABC có 3 góc nhọn . Qua A vẽ 1 đường thẳng vuông góc với AB . Đường thẳng này cắt tia phân giác góc B của tam giác ABC tại M. Kẻ MH vuông góc với BC( H thuộc BC) a) chứng minh tam giác ABM= tam giác HBM b) kẻ AK vuông góc với BC của tam giác ABC. Chứng minh AK//HM
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD vuông góc với BC( D thuộc BC)
a) Chứng minh BA = BD
b) Gọi E là giao điểm của hai đường thẳng d m và B Chứng minh tam giác ABC bằng tam giác DBE.
c) kẻ BH vuông góc MC(H thuộc MC) và AK vuông góc vs ME. Chứng minh MN là tia phân giác góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng
Hình tự vẽ
a, \(\Delta BAM\)và \(\Delta BDM\)có
\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)
\(AM\): cạnh chung
\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)
\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)
\(\Rightarrow BA=BD\)(2 cạnh tương ứng )
Để nghĩ tiếp :(
Ta có:
∠AMB+∠ABM=90o
∠BMD+∠MBD=900
Mà ∠AMB=∠BMD (gt)
=> ∠ABM=∠MBD
Xét ΔBAM và ΔBAM có:
∠ABM=∠MBD (gt)
BM chung
∠ABM=∠MBD (cmt)
=> ΔBAM = ΔBAM (g-c-g)
=> BA=BD (2 cạnh tương ứng)
b,Xét ΔABC và ΔDBE có:
∠ABC chung
∠BAC=∠BDM=90o
BA=BD (cmt)
=> ΔABC = ΔDBE (g-c-g)
c,Ta có
BC⊥ED
AK⊥ED
=> BC//AK hay BC//AN
=> ∠ANM=∠MBC ( 2 góc slt) (1)
Mà:
DH⊥AC
BA⊥AC
=> BA//DH hay BA//DN
=> ∠MND=∠ABM ( 2 góc so le trong) (2)
Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)
Từ(1) và (2) =>∠ANM=∠MND
=> NM là tia phân giác của góc HMK
d,Ta có BM là tia phân giác của góc ABC (3)
Và NM là tia phân giác của góc HMK
Vì ∠ANM=∠MBC
∠MND=∠ABM
=> ∠ANM=∠MBC=∠MND=∠ABM
=> BN là tia phân giác của góc ABC (4)
Từ (3) và (4) => B,M,N thẳng hàng
odfgjpodfpofsgpsf
Cho tam giác ABC có 3 góc nhọn. Qua A vẽ 1 đường thẳng vuông góc với AB. Đường thẳng này cắt tia phân giác góc B của tam giác ABC tại M. Kẻ MH vuông góc với BC ( H thuộc BC)
a) Chứng minh tam giác ABM bằng tam giác HBM
b) Kẻ đường cao AK của tam giác ABC. Gọi N là giao điểm của BM và AK. Chứng minh AK // HM
c) Chứng minh HN // AM
LÀM GIÚP MÌNH CÂU C THÔI NHA!!!
) Ta có:
- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.
Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.
b) Ta có:
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.
Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.
Vậy AK // HM.
c) Ta có:
- AK // HM (theo b).
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.
- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.
Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.
Vậy HN // AM.
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
Cho tam giác ABC vuông tại B có A = 60 độ. Vẽ đường phân giác AD (D thuộc BC). Qua D kẻ đường thẳng vuông góc với AC tại M và cắt đường thẳng AB tại N.
Chứng minh rằng: tam giác ABC đều và M là trung điểm của AC.
Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>M là trung điểm của AC
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé