Tìm số nguyên dương n để n4 + 4 là số nguyên tố .
Tìm n ∈ N * để
1.n4 + 4 là số nguyên tố.
2.n2003 + n2002 + 1 la số nguyên tố
1.Ta có
n4 + 4 = n4 + 4n2 + 4 – 4n2
= (n2 + 2 )2 – (2n)2
= (n2 + 2 – 2n )(n2 + 2 + 2n)
Vì n4 + 4 là số nguyên tố nên n2 + 2 – 2n = 1 hoặc n2 + 2 + 2n = 1
Mà n2 + 2 + 2n > 1 vậy n2 + 2 – 2n = 1 suy ra n = 1
Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố
Vậy với n = 1 thì n4 + 4 là số nguyên tố./
2.Ta có :
n2003 + n2002 + 1 = n2(n2001 – 1) + n(n2001 – 1) + n2 + n + 1
Với n > 1 ta có :
Do đó
Mà n2 + n + 1 > 1 nên n2003 + n2002 + 1 là hợp số
Với n = 1 ta có
n2003 + n2002 + 1 = 12003 + 12002 + 1 = 3 là số nguyên tố .
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
tìm tất cả số nguyên dương n thỏa mãn n5+n4+1 là số nguyên tố
Ta có: \(n^5+n^4+1\)
\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)
\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)
\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\)
Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\) trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:
TH1: \(n^3-n+1=1\)
\(\Leftrightarrow n^3-n=0\)
\(\Leftrightarrow n\left(n^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
Với
\(n=0\Rightarrow0^5+0^4+1=1\) (loại)
\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)
\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)
TH1: \(n^2+n+1=1\)
\(\Leftrightarrow n^2+n=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)
Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố
Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
1) n4 + 4 = (n4 + 4n2 + 4) - 4n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 + 2n).(n2 + 2 - 2n)
Ta có n2 + 2n + 2 = (n+1)2 + 1 > 1 với n là số tự nhiên
n2 - 2n + 2 = (n -1)2 + 1 1 với n là số tự nhiên
Để n4 + 4 là số nguyên tố => thì n4 + 4 chỉ có 2 ước là chính nó và 1
=> n2 + 2n + 2 = n4 + 4 và n2 - 2n + 2 = (n -1)2 + 1 = 1
(n -1)2 + 1 = 1 => n - 1= 0 => n = 1
Vậy n = 1 thì n4 là số nguyên tố
a) Tìm số nguyên dương n để 4n +4 là số nguyên tố
b) Tìm số nguyên dương n để n3 - n2 +n - 1 là số nguyên tố
c) Tìm số tự nhiên nhỏ nhất n để n4 + (n+1)4 là hợp số
1.Tìm 3 số nguyên tố a; b; c sao cho
a2+5ab+b2=7
2.Tìm n∈N để
A=n2012+n2002+1 là số nguyên tố
3.Tìm n∈N* để n4+n3+1 là 1 SCP
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
Cho p=n4-27n2+121 .Tìm n thuộc N*để p là số nguyên tố
copy cái bài trên mạng ak :) có đáp án rồi mờ :) đăng lên làm j ? :))
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
Tìm số nguyên dương n để \(n^4+4\)là số nguyên tố
\(n^4+4=\left(n^2\right)^2+4n^2+4-\left(2n\right)^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)
Vì n^4+4 là SNT mà n^2+2n+2>n^2-2n+2 nên
\(\Rightarrow n^2-2n+2=1\Rightarrow n^2-2n+1=0\Rightarrow\left(n-1\right)^2=0\Rightarrow n-1=0\Rightarrow n=1\)
Thử lại:1^4+4=5 là SNT
Vậy n=5
à nhầm,n=1 nha
Ta có :
\(n^4+4=\left(n^2\right)^2+4.n^2+4-4.n^2=\left(n^2+2\right)^2-\left(2n^2\right)\)
\(=\left(n^2+2-2n\right).\left(n^2+2+2n\right)=\left[\left(n-1\right)^2+1\right].\left[\left(n+1\right)^2+1\right]\)
Vì n là số tự nhiên nên có các trường hợp :
+ Nếu n = 0 thì \(n^4+4=\left[\left(0-1\right)^2+1\right].\left[\left(0+1\right)^2+1\right]=2.2=2^2\)là hợp số ( loại )
+ Nếu n = 1 thì \(n^4+4=\left[\left(1-1\right)^2+1\right].\left[\left(1+1\right)^2+1\right]=1.5=6\)là số nguyên tố
+ Nếu n > 1 thì \(n^4+4\) là tích của hai số lớn hơn 1 là \(\left[\left(n-1\right)^2+1\right]\)và \(\left[\left(n+1\right)^2+1\right]\). Tích của hai số lớn hơn 1 là hợp số . ( loại )
Vậy để \(n^4+4\)là số nguyên tố thì n = 1 .
Học tốt