Chứng minh rằng A = 2 2 + 2 3 + 2 6 chia hết cho 11
A= 2+2^2+2^4+2^6+...+2^1000+2^1002
chứng minh rằng A chia hết cho 3 và chia hết cho 11
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a) Chứng minh rằng nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
b) Cho A= 2+22+23+...+260 . Chứng minh A chia hết cho 3; 7; 15
a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)
và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
b) \(\cdot A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)
\(A=2.3+...+2^{50}.3\)
\(A=3\left(2+..+2^{50}\right)⋮3\)
các trường hợp còn lại tự lm nhé!!
1. a,b,c thuộc N
Chứng minh rằng : 11a + 22b + 33c chia hết cho 11
2. Chứng minh rằng :2+ 22 + 23+.....+2100chia hết cho 3
3.Chứng minh rằng: Số abcabc chia hết cho 7, 11, 13
Xin các bạn giải giúp mình. Cảm ơn
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
Cho A= 11 mũ 9 + 11 mũ 8 +............+ 11+1 Chứng minh rằng A chia hết cho 5
cho B=2+2 mũ 2 + 2 mũ 3 +.................+ 2 mũ 20 chứng minh rằng B chia hết cho 5
Giúp mình với
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
A=(1+11+11.1
thôi cậu tự làm dễ mà
bài 1: tìm x biết:
275x chia hết cho5; 25 và 125
Bài 2: chứng minh rằng: 3n-1 chia hết cho 2 (n thuộc N)
Bài 3: chứng minh rằng số dạng aaaaaa chia hết cho 37 037
Bài 4: chứng minh rằng tích 2 số chẵn liên tiếp chia hết cho 8
Bài 5: A=2+22+...+260 chứng minh rằng A chia hết cho 3; và 15
Bài 6:chứng minh n2+n+1 ko chia hết cho 4 và 5
Bài 7: chứng minh ad+cd+ef chia hết cho 11 thì abcdef chia hết cho 11
a) Chứng minh rằng A=2+2^2+2^3+...+2^20 chia hết cho 5.
b) Chứng minh rằng A=2+2^2+2^3+...+2^100chia hết cho 6
A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
b) A = 2 + 2² + 2³ + ... + 2¹⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁹⁷ + 2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 6.5.(1 + 2⁴ + ... + 2⁹⁶) ⋮ 6
Vậy A ⋮ 6
Cho A= 1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11. Chứng minh rằng A chia hết cho 9
*987435879876********-=-==-*9*-*==*87866544
1.Chứng minh rằng:
A= 1+3+3^2+3^3+....+3^11 Chia hết cho 4
2. Chứng minh rằng:
C= 5+5^2+5^3+...+5^8 chia hết cho 30.
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
Bài 1 : Chứng minh rằng :
a) ( 2^0+2^1+2^2+...2^7) chia hết cho 3
b) ( 2^0+2^1+2^2 + ...+2^11) chia hết cho 19
c) ( 5^1+5^2+5^3+...+5^99+5^100) chia hết cho 6
(1+23)+(2+24)+...+(28+211)
9+2(1+23)+...+28(1+23)
9(1+2+...+28) chia hết cho 9
=>( 2^0+2^1+2^2 + ...+2^11) chia hết cho 9
c)(5+52)+(53+54)+...+(599+5100)
5(1+5)+53(1+5)+...+599(1+5)
6(5+53+...+599) chia hết cho 3